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Introduction

Motivation
Some devices provide essential network services, e.g., domain controller,
other devices depend on them
How to determine such dependencies in large and dynamic networks?
Provide uniform method instead of parsing various data sources

Definitions
Local-remote (LR) dependency – a server needs a remote server to answer requests
from user devices, e.g., a web server depends on a database server
Remote-remote (RR) dependency – server is indirectly dependent on another one,
e.g., a user first has to query a DNS server
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Research Questions

RQ1 Can we identify device dependencies using graph-based machine learning for the link
prediction problem?

RQ2 What correctness, time aspects, dependency types, and amount of processed data of the
link prediction approach for device dependency identification can we obtain?
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Fundamentals: Latent Graph Representation Learning

Description
Reveals the hidden structure of the graph
Node embedding – low-dimensional space where nearby vertices are close in the
original graph

Common Approach
Inspired by the Natural Language Processing (NLP) approaches
Random walks represent sentences, vertices words, and neighboring vertices context
Node embedding maps vertices to vectors of values – their embeddings
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Steps of the Method
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Sampling and preprocessing – reservoir
sampling of IP flows that represent edges
Random walks – conditions imposed on two
subsequent edges in random walks
Splitting of chains – create candidate
dependencies
Neural network – one hidden layer with
number of features equal to embedding
dimension
Binary operation – combines node
embedding into dependency embedding,
e.g., scalar product
Model fitting – classifier is learned for
known positive and negative dependencies
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Method – Sampling and Preprocessing
Input

IP flows – IPFIX in our case, unidirectional
Sampling required due to the complexity of neural networks

Sampling
Obtaining a representative sample with n internal and m external IPv4 addresses
(removes network scanning, for example)
Approx. 100 of the most important IP addresses in the experiment
Reservoir sampling selects each edge with equal probability

Preprocessing
Removing communication that does not use TCP or UDP protocols
Communication graph is constructed from the filtered and sampled flows
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Method – Conditions for Random Walks
Four Conditions
1. Opening of LR dependency

t1(vi, vi+1) ≤ t1(vi+1, vi+2) ≤ t2(vi+1, vi+2) ≤ t2(vi, vi+1), i ∈ {1, . . . , n − 2}

where t1 and t2 denote the timestamps of beginning and end of the flow
2. Return from LR dependency (flow sequence in the opposite direction than Opening)
3. Opening of RR dependency
4. Return to the previous IP address

Notes
Mathematical expressions for conditions 2 – 4 are listed in the paper
Edges fulfilling conditions represent building blocks of communication chains
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Method – Communication Chains and Candidate Dependencies

Communication chain:
(11, 12, 13, 16)
Context size: 3
Contexts:
(11, 12, 13), (12, 13, 16)
Candidate dependencies:
(11, 12), (11, 13),
(12, 13), (12, 16)
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The longer the distance in the chain, the lower the chance that dependency exists
Candidate dependencies are pairs of addresses within the context
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Method – Final Steps

Neural Network (NN)
NN uses the candidate dependencies to estimate features of the hidden layer
IP addresses from candidate dependencies would be close together in the IP
address embedding space

Dependency Embedding
Scalar product of two vectors (node embeddings)
This extends the space into which the candidate dependencies are mapped
Contains a vector of values for each candidate pair
Each possible dependency in the embedding is given its label by a trained
dependency classifier
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Evaluation

Python Implementation
Reuses neural network functionality of Node2Vec from PyTorch Geometric
We provide sampling of random walks and processing of IP flows

Datasets
T1 – T6 – datasets from cyber defense exercise with six teams and topologies
U10m, U1h – ten-minute long and one-hour long datasets from university campus
network

Ground Truth
Determined by exhaustive brute force search of all possibilities
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Ground Truth – Statistics

T1 T2 T3 T4 T5 T6 U10m U1h

DD 300 444 330 427 321 143 38,372 2,866
RR 248 131 177 310 98 35 1,731 164
RR3 1,875 113 697 2,067 161 26 23,905 2,347
TD 17 13 22 24 9 14 854 117
TD3 0 0 2 1 0 0 359 81

Table 1: Number of dependencies for datasets. U1h contains average values from twelve time
windows. DD denotes direct, RR remote-remote, and TD transitive dependencies.
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Data Size and Execution Time

T2 T6 U10m U1h

IP flows 54,941 28,506 8,259,584 78,270,416
IP addresses 1,421 247 451,365 1,235,300
Vertices 96 103 129 93
Edges 21,720 16,080 15,076 18,411

Preprocessing 14.9 s 6.2 s 27.2 s 27.3 s
Creating embedding 14.0 min 14.0 min 6.2 min 6.9 min
Computation < 1 s < 3 s < 1 s < 1 s

Table 2: Amount of data and measured time for selected datasets. U1h contains averages from
twelve time windows except for IP flows and addresses.
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Evaluation Metrics

Test size T1 T2 T3 T4 T5 T6 U10m U1h

0.25 Accuracy 0.514 0.417 0.493 0.503 0.429 0.337 0.479 0.515
Precision 0.612 0.521 0.597 0.605 0.530 0.444 0.604 0.615
F1 score 0.666 0.566 0.644 0.656 0.572 0.462 0.625 0.664

0.50 Accuracy 0.535 0.453 0.529 0.532 0.485 0.403 0.515 0.545
Precision 0.628 0.544 0.621 0.630 0.580 0.485 0.612 0.638
F1 score 0.677 0.584 0.669 0.672 0.617 0.510 0.645 0.681

— AUC 0.68 0.64 0.67 0.68 0.67 0.61 0.71 0.69
AP 0.81 0.74 0.80 0.81 0.78 0.68 0.84 0.81

Table 3: Evaluation metrics for datasets averaged from fifteen train-test splits except for U1h split
also into twelve consequent windows.
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Receiver Operating Characteristic and Precision-Recall Curves (T5)
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Average Precision (AP) is claimed to be a suitable metric for imbalanced datasets

L. Sadlek, M. Husák, and P. Čeleda · Identification of Device Dependencies Using Link Prediction · IEEE/IFIP NOMS 2024 15 / 18



Lessons Learned

Method
Approach for all dependency types simultaneously
Some types of dependencies do not provide enough labels

Evaluation
Ground truth corresponds to LR dependencies obtained from NSDMiner
AUC for directed graphs comparable with related work and undirected graphs
Local similarity indices – approach reveals not directly visible dependencies
Large amounts of data must be split into batches
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Summary

Contribution
Graph representation learning for a new use case – dependency embedding
Core and most complex part – custom exploration of communication chains
Conditions for timestamps of IP flows and adjustments for IP flow data
Measurements of method’s properties

Supplementary Materials
A proof-of-concept implementation, ground truth labels, and results
Available at: https://doi.org/10.5281/zenodo.10548433

L. Sadlek, M. Husák, and P. Čeleda · Identification of Device Dependencies Using Link Prediction · IEEE/IFIP NOMS 2024 17 / 18

https://doi.org/10.5281/zenodo.10548433



