Detailed Information on Publication Record
2024
Semilinear elliptic Schrödinger equations involving singular potentials and source terms
GKIKAS, Konstantinos T and Phuoc-Tai NGUYENBasic information
Original name
Semilinear elliptic Schrödinger equations involving singular potentials and source terms
Authors
GKIKAS, Konstantinos T and Phuoc-Tai NGUYEN (704 Viet Nam, belonging to the institution)
Edition
Nonlinear Analysis, Elsevier, 2024, 0362-546X
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.400 in 2022
Organization unit
Faculty of Science
UT WoS
001106766700001
Keywords in English
Hardy potentials; Critical exponents; Source terms; Capacities; Measure data
Tags
Tags
International impact, Reviewed
Změněno: 25/3/2024 15:06, Mgr. Marie Šípková, DiS.
Abstract
V originále
Let $Ω\subset \mathbb{R}^N$ ($N>2$) be a $C^2$ bounded domain and $Σ\subset Ω$ be a compact, $C^2$ submanifold without boundary, of dimension $k$ with $0\leq k < N-2$. Put $L_μ= Δ+ μd_Σ^{-2}$ in $Ω\setminus Σ$, where $d_Σ(x) = \mathrm{dist}(x,Σ)$ and $μ$ is a parameter. We study the boundary value problem (P) $-L_μu = g(u) + τ$ in $Ω\setminus Σ$ with condition $u=ν$ on $\partial Ω\cup Σ$, where $g: \mathbb{R} \to \mathbb{R}$ is a nondecreasing, continuous function and $τ$ and $ν$ are positive measures. The interplay between the inverse-square potential $d_Σ^{-2}$, the nature of the source term $g(u)$ and the measure data $τ,ν$ yields substantial difficulties in the research of the problem. We perform a deep analysis based on delicate estimate on the Green kernel and Martin kernel and fine topologies induced by appropriate capacities to establish various necessary and sufficient conditions for the existence of a solution in different cases.
Links
GA22-17403S, research and development project |
|