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1 | INTRODUCTION
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Abstract

Persistent infection with high-risk types of human papillomaviruses (HPV) is a major
cause of cervical cancer, and an important factor in other malignancies, for
example, head and neck cancer. Despite recent progress in screening and
vaccination, the incidence and mortality are still relatively high, especially in low-
income countries. The mortality and financial burden associated with the treatment
could be decreased if a simple, rapid, and inexpensive technology for HPV testing
becomes available, targeting individuals for further monitoring with increased risk of
developing cancer. Commercial HPV tests available in the market are often relatively
expensive, time-consuming, and require sophisticated instrumentation, which limits
their more widespread utilization. To address these challenges, novel technologies
are being implemented also for HPV diagnostics that include for example, isothermal
amplification techniques, lateral flow assays, CRISPR-Cas-based systems, as well as
microfluidics, paperfluidics and lab-on-a-chip devices, ideal for point-of-care testing
in decentralized settings. In this review, we first evaluate current commercial HPV
tests, followed by a description of advanced technologies, explanation of their
principles, critical evaluation of their strengths and weaknesses, and suggestions for

their possible implementation into medical diagnostics.
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e.g., HPV16, 18, 31, 33, or 45), however, may induce malignant

transformation of epithelial tissue, leading to the formation of

Infection with human papillomavirus (HPV) is believed to be the most
common sexually transmitted infection in the world. It is estimated
that over 80% of individuals will experience HPV infection at some
point in their lives.! Most of >200 known types of HPV do not pose
significant health risk, and if so, they are mostly manifested by skin or
genital warts.? A distinct subset of HPVs termed high-risk (hrHPVs,

precancerous lesions and ultimately cancer—especially cervical
cancer (CC),® but to a lesser degree also anogenital tumors* or head
and neck cancer (HNC). Infection with hrHPV does not necessarily
result in cancer; the virus is often cleared by the immune system
(within 2-3 years) without the formation of lesions.® It is the

persistent infection associated with the integration of viral DNA into
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the host genome that is responsible for a slow transformation of the
epithelium.”

Historically, there have been several milestones in the screening
and prevention of CC. For instance, introduction of the Pap
(Papanicolaou) test as a routinely used cytological test saved
thousands of lives and caused CC, the number one cancer killer of
women in the US in early 1900s, to drop out from the top 10.2
However, in a well-known ATHENA trial, HPV testing was shown to
be a more sensitive strategy for CC screening than the Pap test alone,
that is, HPV testing had a lower false-negative rate for predicting
cervical lesions.” This implies that by using HPV molecular
diagnostics, more women can be identified and directed for further
surveillance or treatment, which is a reason why HPV testing is now
being considered as an additional screening method for CC in many
developed countries.*®

Another milestone is the HPV vaccination, which has helped
bring down the prevalence of CC in the US alone by 64% in females
aged 14-19 years.!! There are currently three approved prophylactic
vaccines, that is, Gardasil® (quadrivalent vaccine introduced in 2006
targeting HPV6, HPV11, HPV16 and HPV18), Cervarix® (bivalent
vaccine since 2007 targeting HPV16 and HPV18) and Gardasil 9®
(nonavalent vaccine since 2014 targeting HPV6, HPV11, HPV16,
HPV18, HPV31, HPV33, HPV45, HPV52 and HPV58).12 Clinical trials
targeting young women have shown similar and very high efficacies
for all three vaccine types, such as FUTURE trials for Gardasil (98%
efficacy),® PATRICIA trial (short for PApilloma TRIal against Cancer
In young Adults) for Cervarix (92.9% efficacy)?* and NCT00543543
study for Gardasil 9 with 97% efficacy.15 Moreover, randomized,
double-blind clinical trial demonstrated that the quadrivalent HPV
vaccine efficiently prevents infection with HPVé, 11, 16, and 18 and
the development of related external genital lesions also in young
men,'® and a similar trial is underway to show efficacy for the
nonavalent vaccine in men.t” HPV vaccines are considered very safe,
with only mild side effects, such as pain and swelling at the injection
site, fever or headache. On the other hand, the implementation of the
vaccines is far from universal or equitable, mainly due to high vaccine
costs, recent supply shortage, or inadequate delivery and storage
infrastructure, but also due to the COVID-19 pandemic that has
affected existing HPV vaccination programs and halted the introduc-
tion of new programs,'® or because of vaccine hesitancy and
associated lack of community engagement.?’

Less frequent, but certainly not less interesting, is determining
HPV status in HNC. The virus is implicated as the causative agent of
certain HNC subtypes, especially oropharyngeal carcinomas (OPC)?°
where we witnessed in past years a steep increase in incidence in
non-smokers under the age of 50.2 A meta-analysis on >12 000
HNC cases published in The Lancet Oncology revealed that ~32% of
all cases were HPV-positive, with HPV16 being the most frequent
subtype (>80%).22 It was shown that HPV positivity in HNC strongly
correlates with a better prognosis?® suggesting a different biological
basis than in HPV-negative tumors, and thus different approach to
therapy management.?® Indeed, information about HPV status in

these cases could be helpful in selecting suitable treatment.

HPV diagnostics is performed with commercially available HPV
tests, described in greater detail in Section 2. These tests, however,
are relatively expensive, time-consuming, and require advanced
instrumentation, limiting their more widespread application especially
outside the laboratories at the point-of-care, or in low-resource
settings.2* Not surprisingly, a plethora of novel state-of-the-art
technologies have emerged with the aim of reducing overall cost,
time, or material consumption in HPV detection. These include for
example, various isothermal amplification techniques (IATs) as rapid
alternatives to classical PCR (polymerase chain reaction, described in
Section 3), dot blots and lateral flow assays with colorimetric readout
as simple tools ideal for low-resource settings (Section 4), CRISPR-
Cas technology (acronym for clustered regularly interspaced short
palindromic repeats—CRISPR-associated proteins) adapted for bio-
sensing research that greatly improves specificity of detection
(Section 5), microfluidic, paperfluidic and lab-on-a-chip (LOC)
technologies that integrate all reaction steps into a single device
(Section 6), or nanomaterials that increase sensitivity of the
measurement (Section 7). In this review, we show that these
technologies are promising candidates in current HPV diagnostics,
but we also report the obstacles that these technologies must
overcome to compete with standard methods of detection to be

applied in clinical routine.

2 | OVERVIEW OF COMMERCIAL HPV
TESTS

In clinical practice, cervical cytology (commonly known as Pap smear
or Pap test) is a routine CC screening for the detection of abnormal
cervical epithelial cells that may indicate precancerous lesions or
cervical carcinoma. Due to the low sensitivity of Pap tests, molecular
HPV diagnostics which identifies presence of an infection with high-
risk types of HPV has been approved as an additional technique for
CC screening. In fact, there is a gradual transition from cytological
testing alone to a combination of cytology and molecular testing or to
primary HPV screening.?°~%/

Currently, the most common way of detecting HPV is via nucleic
acid amplification tests (NAATSs), especially PCR. NAATs are highly
sensitive and specific and can detect the presence of HPV DNA or
messenger RNA (mRNA, product of a gene transcription) in a variety
of samples, including cervical smears, anal and buccal swabs, or in
saliva. PCR-based tests are widely used due to their high sensitivity,
specificity, and ability to detect multiple HPV types simultaneously,
and are often used for CC screening, the diagnosis of genital warts,
and for other HPV-related diseases. Most commercial tests used in
clinical practice are based on PCR to identify HPV DNA, particularly
viral late gene L1 (responsible for the production of the major viral
capsid protein), and two early genes E6 and E7 (acting as oncogenes
that promote tumor growth and malignant transformation). Some of
these DNA tests simultaneously identify several hrHPV types with
oncogenic potential, but do not distinguish between them individu-

ally; other tests detect hrHPV but differentiate only some, and most
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advanced tests allow full genotyping by discriminating each HPV type
present in the sample.282° HPV DNA testing is used to confirm HPV
infection but is not indicative of progression of the infection. Hence
other tests, especially those targeting either E6/E7 mRNA or viral
oncoproteins, were developed to determine active transcription of
virus in infected cells and to provide more accurate information on
disease prognosis.° Indeed, some studies confirmed that HPV E6/E7
mRNA testing was more specific and had a higher positive predictive
value than HPV DNA testing, making them suitable biomarkers for
the detection of high-risk HPV-associated cervical precancerous
lesions.31:32

Basic information about the most frequently used tests in clinical
practice is summarized in Table 1. More detailed and comprehensive
information about commercially available HPV tests can be found

14057 or in other review papers.®3-%7

either in references in Table
Despite a large number of commercially available HPV tests, new
technologies and methods are being developed that would enable
faster, simpler, and cheaper identification of high-risk active HPV
viruses while maintaining the necessary specificity and sensitivity. It
should be noted, however, that before entering clinical practice, any
new technology would have to follow international consensus
guidelines for primary screening,®® as well as to comply with
VALGENT studies (VALidation of HPV GENotyping Tests®?) or would
need an approval from the US Food and Drug Administration
(FDA).2® These advanced technologies are introduced and described

in following chapters, including their strengths and weaknesses.

3 | ISOTHERMAL AMPLIFICATION
TECHNIQUES AS RAPID ALTERNATIVES
TO PCR

PCR is an extremely versatile nucleic acid amplification technique
with many diverse applications in biomedical research and far
beyond. It offers numerous benefits, such as high sensitivity and
specificity, relative simplicity, or option of multiplexing, and is still a
major tool used in HPV diagnostics and genotyping.>® However, PCR
requires a dedicated instrument—a thermal cycler—for cycling
between temperatures, is relatively time-consuming, and highly
sensitive to PCR inhibitors, such as various salts or detergents. To
circumvent these drawbacks, new techniques for nucleic acid
amplification started to emerge at the turn of the millennium,
collectively called isothermal amplification techniques (IATs). As the
name implies, IATs operate at constant temperature without a need
for cycling, a feature provided by special polymerases with strand
displacement abilities. They achieve comparable sensitivities as PCR-
based techniques but often at shorter times (in 20-30 min), and are
usually resistant to PCR inhibitors. The fact that IATs operate at
constant temperature without a need for thermal cycling is a major
factor why they are now being increasingly coupled with various
advanced technologies, such as lateral flow assays, LOC devices, or
microfluidic platforms (described in next sections).

Perhaps the most well-known IAT is a loop-mediated isothermal

amplification (LAMP), especially due to its association with recent

TABLE 1 Overview of the most frequently used commercial HPV tests.
Number of
Biomolecule Test name Company Target genotypes
Tests without specifying HPV type
DNA Hybrid Capture® 2 (hc2)®* Qiagen (Digene) Full HPV genome 13
DNA Cervista HPV HR3233 Hologic E6/E7 14
Partial genotyping
DNA Cobas HPV Test** Roche L1 14
DNA RealTime High Risk HPV assay>® Abott Molecular L1 14
DNA BD Onclarity HPV3¢%7 Becton, Dickinson and Company E6/E7 14
DNA Xpert® HPV assay®® Cepheid E6/E7 14
DNA Cervista HPV 16/183%74° Hologic E6/E7 2
Full genotyping
DNA Anyplex || HPV284142 Seegene L1 28
DNA INNO-LiPA® HPV Genotyping Fujirebio L1 32
Extra 1143
DNA PapilloCheck*+*° Greiner Bio-One E1 24
Non-DNA based tests
RNA Aptima HPV Assay*® Hologic E6/E7 mRNA 14
protein OncoE6 HPV test*”48 Arbor Vita Corporation HPV16/18 E6 oncoprotein 2
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COVID-19 pandemic when numerous LAMP tests in a reverse
transcription mode (RT-LAMP) were introduced for SARS-CoV-2
RNA detection.’? LAMP technique uses Bst polymerase and four to
six primers to rapidly amplify either DNA or RNA (under 1h) at
elevated temperatures between 55°C and 70°C. It is commonly used
for amplification of bacterial and viral nucleic acids, and thus HPV has
been targeted by LAMP in various studies.®®”3 Despite its
advantages, LAMP is highly sensitive to contamination (similarly to
PCR), requiring ideally sterile DNA-free and RNA-free workspace.
Moreover, design of LAMP primers is not trivial, and needs to be
performed in a special software (such as PrimerExplorerV5, https://
primerexplorer.jp/e/), but even this does not guarantee that the
primers will be functional. Usually, more set of primers need to be
tested to find the most suitable one. Often, LAMP is coupled with
colorimetric detection which utilizes pH indicators that change color
when the pH of the solution turns more acidic.”®~”3 This exactly
happens in enzymatic amplification reactions (i.e., PCR and IATs) that
generate hydrogen ions during incorporation of dNTPs into the
growing DNA or RNA strand, decreasing the pH of the solution. Color
changes are easily visible by naked eye and thus do not require any
equipment, but the sensitivity of such detection is rather limited. For
instance, in a study by Zhong et al., authors differentiated among 6
HPV subtypes in samples from patients with condyloma acuminatum,
where positive samples were visible with the naked eye by changing
the color of a hydroxynaphthol dye from violet to blue.®®> HPV LAMP
products can be determined also with turbidimetry measurements,
where magnesium pyrophosphate is generated during the LAMP
reaction and makes the reaction mixture cloudy. Increased turbidity
caused by magnesium pyrophosphate particles is measured optically
at certain wavelength by calculating the amount of light that did not
pass through the sample. Turbidimetry is a very quick and simple
method without a need for any expensive lasers and fluorophores,
but its accuracy can be negatively affected by bubbles in the sample,
size of the particles, or particle sedimentation. Sensitivity of
turbidimetry itself depends on selected light source and nature of
the examined substances, but when connected to LAMP, it was
demonstrated to detect positive amplification with as little as 10
copies of the target sequence per sample.és’“’

Although colorimetric readout is quick and straightforward, it
suffers from low sensitivity and ambiguous results. More sensitive
approach is to use for example, Real-Time LAMP or digital LAMP,
which are LAMP variants that resemble Real-Time PCR and digital
PCR, respectively. In former case, the Real-Time LAMP was recently
coupled with endovaginal MRI to improve accuracy for early-stage
CC detection in the group of 27 CC patients and 14 negative
controls.” Authors have targeted not only HPV16 and HPV18 DNA
but also hTERT, TERC/GAPDH, and MYC/GAPDH mRNA tumor
biomarkers. Overall, it was the use of a spatially multiplexed LAMP
assay in combination with high-resolution imaging that resulted in
improved specificity for cancer detection. The latter case involving
digital LAMP was combined with microfluidic slip chips, where a total
number of 2240 droplets, each of 4.5 nl allowed to quantify the viral
load of HPV16 and HPV18 by comparing numbers of positive wells

with standard curve obtained with plasmid control.”> The assay was
tested on 15 clinical samples, showing full agreement with commer-
cial Cobas 4800 test (Roche), but revealing also hidden coinfections.

Electrochemical (EC) end-point detection is another suitable
technique used in combination with LAMP. EC methods provide an
option for inexpensive, simple, and miniaturized instrumentation with
the possibility of parallel measurements at electrode chips and arrays
while allowing rapid and highly sensitive determinations.”®~”® For
instance, a diagnostic Clinichip HPV test that employed LAMP and
electrochemical DNA chip could recognize 13 clinically relevant HPV
types in less than 3 h. In that study, 247 Japanese women, including
109 with normal cytology, 43 with cervical intraepithelial neoplasia of
grade 1 (CIN1), 60 with CIN2/3, and 35 with invasive cervical cancer
were tested for carcinogenic HPV genotypes, reaching good
agreement with direct sequencing.®® Our team has published several
research articles reporting fast and simple LAMP-based assays
combined with electrochemical detection (EC-LAMP), targeting
HPV16/18 genotypes in both cervical cell lines and cervical smears
from women with precancerous lesions (Figure 1).”°782 After
development and optimization of the assay,® the EC-LAMP was
applied into a cohort of 61 clinical samples to evaluate its
performance and compared it with PCR-based methods and with
INNO-LiPA genotyping assay.®? Good specificity and negative and
positive predictive values were reached, all over 90%. Later, a DNA
extraction step was eliminated by applying the EC-LAMP directly into
crude lysates, whereby the cervical samples were scraped from
sampling brush with sterile tweezers, then simply boiled for 5 min and
introduced into the LAMP mixture for amplification.”’ This elimina-
tion not only simplified overall assay, but also decreased a risk of
contamination by shortening overall sample exposition to the
environment. The last generation of the assay involved a transfer
of the protocol from magnetic beads directly to the gold electrode
chips for easier washing and shorter hands-on time.®? LAMP as a
rapid and undemanding technique could be thus a good choice for
fast determination of HPV infection.

Another IAT, the recombinase polymerase amplification (RPA),
often functions with forward and reverse PCR primers, but instead of
a Taqg polymerase, it uses a cocktail of three enzymes—recombinase
(enabling primers to pair with homologous sequences in target DNA
strand), single-stranded DNA-binding protein (stabilizing single-
stranded DNA structures and preventing displacement of primers),
and strand-displacing polymerase (performing actual synthesis of
complementary DNA). RPA is carried out at mild temperatures
between 37°C and 42°C, but even a room temperature may be used
at somewhat lower efficiency, making this technique especially useful
in very simple devices without access to thermoblocks, such as in
lateral flow assays (see Section 4). Proper mixing before and during
reaction, however, must be ensured due to relatively high density of
the final RPA mixture. If well-performed, RPA can be highly useful
alternative to PCR due to its speed and extremely simple
instrumentation involved. The major downside is the availability of
RPA reagents, which are sold by only a single company (TwistDx™,

https://www .twistdx.co.uk), which not only increases the overall
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FIGURE 1 Electrochemical assay with LAMP amplification (EC-LAMP) workflow. (A) To avoid DNA extraction, clinical samples were simply
boiled for 5min, followed by the LAMP reaction. (B) Digoxigenin-tagged (DIG-dUTP) LAMP products were hybridized to biotinylated DNA
capture probe (bio-CP) attached to streptavidin magnetic beads (STR-MB), which then interacted with antidigoxigenin antibody-horseradish
peroxidase conjugate (antiDIG-HRP) for enzymatic reaction. (C) Electrochemical measurement of the enzymatic reaction on carbon electrode
chip in 8-electrode format. Reprinted with permission from Ref.”’ Copyright 2021 Elsevier.

cost, but poses a risk in the event of prolonged disruptions in the
distribution of these products.

In summary, IATs allow fast and inexpensive nucleic acid
amplification with similar efficiency as PCR, requiring milder and
constant temperatures without a need for PCR cycler. Since they are
more tolerant to common PCR inhibitors, isothermal reaction may be
often performed in crude cell or tissue lysates without preceding
DNA extraction step. On the other hand, due to an ultrasensitive
nature of IATs, caution must be taken to prevent contamination of
the workplace and if possible, reactions should be performed in
sealed environment. Furthermore, most studies so far demonstrated
only a proof-of-concept, while validation within clinical studies on a
larger number of samples is missing. Taken together, the advantages
make IATs perfect candidates for implementation in developing

countries, or in low-resource settings in general.

4 | REVERSE DOT BLOTS AND LATERAL
FLOW ASSAYS—IDEAL FOR LOW
RESOURCE SETTINGS

Among the numerous diagnostic techniques available, reverse dot/
line blot and lateral flow assays (LFA) have gained significant
attention for their simplicity, cost-effectiveness, and rapidity. The
first one has proven valuable in identifying mutations related to
hereditary diseases and cancer-associated genes,®% while LFAs was
mostly used for protein detection, especially antigens.?* Below, we
describe both techniques by providing their principles, examples,

advantages as well as drawbacks.

Briefly, the reverse dot blot/line blot is a simple diagnostic
method where the gene-specific oligonucleotide probes are bound
(coated) onto the predefined dots or lines at the nylon membrane,
respectively, followed by a hybridization of these probes with
complementary target DNA, usually labeled PCR products.®2> The
main benefits of the reverse blots are their simplicity, rapidity,
accuracy, cost-effectiveness, and option of screening for multiple
mutations/polymorphisms in a single hybridization reaction where
results from a single sample can be located on a single strip to
minimize user errors. Moreover, since PCR products (but not probes)
are labeled, potential false positives occurring from binding of the
probes to nonspecific sequences is less probable.® Despite these
advantages, errors may occur during the conjugation step that may
result in weak signals or false positives. Also, a visual detection with
naked eye, where signal intensity varies from strong through medium,
weak, very weak, and negative, may lead to false interpretation of
results. Reverse blots were used to screen for HPV infection already
in 1998 when Gravitt and colleagues developed a reverse line blot
strip assay for screening 27 different genotypes of HPV.®” The
developed method used a sensitive and broad-spectrum PCR
amplification system, followed by a single hybridization with a
reverse line blot detection for analysis of 15 high-risk and eight low-
risk HPV types. It was applied to a total of 359 cervical specimens,
although 30 of them were eliminated due to false signals, which can
be considered a major drawback of this otherwise interesting and
simple assay. For each clinical sample, two multiplex PCRs were
performed, which included a mix of biotinylated primers targeting L1
region of different HPV genotypes. Although authors compared their

results with their previous work utilizing dot-blot assay,®® reaching
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high concordance from 97% to 100%, validation with the gold
standard was missing.

LFA, also known as lateral flow test or lateral flow device, is a
rapid, simple, and low-cost paper-based analytical platform for the
qualitative determination of the presence or absence of target
analytes in various complex samples without the need for specialized
equipment. It is mostly used for detection of protein antigens or
antibodies since it relies on principles of the enzyme-linked
immunosorbent assays (ELISA); two well-known examples are home
pregnancy tests and rapid antigen tests for SARS-CoV-2 detection.
However, LFAs have been widely used also for nucleic acid detection,
employing two different formats - nucleic acid lateral flow (NALF)
and nucleic acid lateral flow immunoassay (NALFIA).8° NALF
directly detects PCR-amplified DNA product using capture and
labeled reporter oligonucleotide probes complementary to the
product. Usually, capture probes are immobilized on a nitrocellulose
membrane using a small molecule in conjunction with its high-affinity
counterpart, like biotin-streptavidin, while reporter probes are tagged
with gold nanoparticles for signal generation. Since hybridization
takes place on a paper, any secondary structure formation within the
three DNA sequences severely disrupts interactions, necessitating
extensive optimization for each new target.” On the other hand,
NALFIA detects hapten-labeled DNA (mostly exploiting primers
tagged with digoxigenin or biotin) using capture and labeled reporter
antibodies or streptavidin.?2 This architecture eliminates the need for
specific optimization of the lateral flow strip, allowing the strip's
reagents to be nontarget-specific.”* A typical LFA strip consists of
three pads and a detection zone (Figure 2). First, liquid sample is
loaded into a sample pad and the analyte moves via capillary flow
(without any external forces applied) to the conjugate release pad,
where it interacts with specific antibodies conjugated to colored or
fluorescent particles, mostly colloidal gold and latex microspheres.”®
The conjugate-analyte complex then moves along the strip to the
detection zone to bind with immobilized antibodies or antigens at
predefined lines called test line and control line. The target
recognition occurs at the test line, where, as the name implies,
appears a line visible by a naked eye. No line appears without a

target. Control line purely indicates that the liquid migrated properly

(A) Flow direction

4 T

Membrane

N AN\

Test line

=

Absorbent pad

Sample pad

Conjugate release pad
Control line

through the strip. The last pad, called absorbent pad (or absorption
pad) at the end of the strip maintains the proper flow rate and stops
backflow of the sample. Major challenges of LFAs include low
multiplexing abilities (only few biomarkers can be detected simulta-
neously), lower sensitivity resulting in false negatives (especially in
low viral load samples resulting in faint test lines that may be difficult
to read with naked eye) and need for high-quality antibodies (to
ensure accurate and reliable results due to exclusive binding of the
antibodies to the target analyte and not nonspecifically to other
biomolecules). LFA tests are often coupled with PCR amplification.
For instance, Xu et al. developed a dual-color fluorescence-based
LFA to address low multiplexing issues by detecting four common
HPV types (6, 11, 16, and 18).* Since fluorophore-labeled detection
probes for each genotype were included in the PCR reaction and
capture probes were immobilized at different locations of the strip,
multiple sequences could be hybridized in a single lateral flow assay.
In fact, due to the presence of five test lines, the suggested assay
could detect up to 13 HPV types in less than 30 min after PCR
amplification. The developed assay was applied to 157 cervical
samples and compared with results from GenoArray kit, achieving
98.1% (154/157) concordance between these two methods.
Besides PCR, lateral flow assays for HPV detection are
increasingly combined also with IATs, mostly RPA, which was
described in chapter 3.7°°%8 For instance, a study by Ma et al.
utilized RPA to detect 25 HPV types from as low as 100 fg of
genomic DNA per reaction, using a panel of 450 cervical clinical
samples. After RPA amplification, the presence of the target
sequences in samples was detected by lateral flow dipstick and
reversed dot blot techniques. Good concordance between the
detection methods and routine cervical screening was achieved,
reaching 94.7% agreement for lateral flow dipstick and 97.8%
agreement for the reversed dot blot.®” A very recent study by
Kundrod et al. utilized an inventive low-cost NATflow platform
(commercially available from Axxin Pty Ltd.) for RPA-based detection
of HPV16 and HPV18.°% The platform did not require DNA
extraction step, but instead involved a streamlined sample prepara-
tion technique that could be directly added to the amplification

reaction by using achromopeptidase enzyme (ACP) for enzymatic

(B)

Positive Negative Invalid

( N
C’i G G C
T[ T T T et

FIGURE 2 Fundamentals of lateral flow assay, showing (A) overall layout of the test strip and (B) visual detection of results based on a
presence of test line (T) and control line (C). Created with BioRender.com.
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lysis of the cells, reducing overall assay time to only 45 min. The
performance of the test was evaluated with both provider-collected
samples (30 samples collected in the U.S.) and self-collected samples
in low-resource settings (55 samples self-collected in Mozambique).
When compared with gPCR, the sensitivity of detecting HPV16 was
100% for samples containing a minimum of 1000 copies per reaction
and 93% for those with at least 500 copies per reaction. The
specificity of the test for HPV16 was 100%, the positive predictive
value was 86% and the negative predictive value was 56%. When
evaluating combined HPV16 and HPV18 in preserved samples,
NATflow and cobas showed an overall agreement of 85%. All
discordant samples had fewer than 500 copies per reaction,
indicating that low viral load samples could be more difficult to
determine with this platform. The projected cost of a single test was
less than $5, showing a great potential for point-of-care HPV
diagnostics. In another study, Rungkamoltip et al. developed an RPA-
based LF strip for combined HPV16/18 DNA detection by monitor-
ing circulating cell-free DNA (cfDNA) from serum of 39 cervical
cancer samples and 29 control samples with the purpose of avoiding
invasive sampling.?® The results obtained within 30 min were
compared with digital droplet PCR, showing 100% sensitivity and
88.24% specificity. However, it should be noted that circulating HPV
DNA has a very low abundance in serum of women with
precancerous cervical lesions and thus its use as a diagnostic
biomarker is questionable. Instead, several studies demonstrated
that it may act as a prognostic biomarker in blood of patients with
primary tumors of cervix to monitor advanced stages or possible

metastases.”? 103

5 | CRISPR-CAS SYSTEM FOR IMPROVED
SELECTIVITY

CRISPR-Cas technology (short for Clustered Regularly Interspaced
Short Palindromic Repeats/CRISPR-associated protein) was intro-
duced in 2012 by the research group of Jennifer Doudna and
Emmanuelle Charpentier (awarded joint Nobel Prize in chemistry in
2020), which revolutionized not only genome editing but also
molecular biology in general.1®* Soon after this discovery, CRISPR-
Cas system was introduced into molecular diagnostics, including the
field of biosensing. Its principle lies in a cleavage of specific nucleic
acid sequences recognized by a guide RNA that is made up of two
parts: CRISPR RNA (crRNA), a 17-20 nucleotide sequence comple-
mentary to the target nucleic acid, and a trans-activating RNA
(tracrRNA) scaffold recognized by a catalytically active Cas protein.
The final CRISPR-Cas complex then binds to the target sequence and
cleaves it in a highly specific manner. This technology had a huge
impact on molecular diagnostics by greatly increasing specificity of
bioassays.1°° Currently, there is a plethora of different caspases, for
example, Cas9, Cas12, Cas13, Cas14, and their subtypes,°4197 that
specifically cleave various target molecules such as single-stranded
(ss) DNA, double-stranded (ds) DNA, ss RNA with cis- and/or trans-

108

cleavage activity, or even unwind dsDNA.X%® Accordingly,

CRISPR-Cas system has been employed in detection of wide range

of biomarkers, including microRNAs, 10111 DNA methylation,112

113114 various bacteria such as Salmo-

2'118

single point mutations,
nella,**>*% Yersinia pestis,117 or viruses such as SARS-CoV-
EBV,!'? as well as HPV.12°-142 |nterestingly, CRISPR-Cas technology
was recently used also in a treatment of HPV infection-associated
cervical cancer. By using liposome delivery of CRISPR-Cas9, authors
effectively knocked out HPV, which, in turn, induced autophagy and
triggered cell death-related immune activation by releasing damage-
related molecular patterns.14

The CRISPR-Cas system facilitates identification of individual
HPV genotypes at very low copy numbers. Most of these HPV assays
are frequently coupled with RPA and use fluorescence end-point
detection. An interesting example was reported by Xu et al,'*®
combining a microfluidic device with RPA reaction and CRISPR-
Cas12a that ensured multiplexed detection of nine hrHPV genotypes
within 40 min. The so-called MiCaR platform was initiated by
thermolysis of the sample (without DNA extraction), followed by a
multiplexed RPA. The RPA products were then loaded into the
microfluidic device and specifically cleaved with CRISPR-based
system containing Cas12a, crRNA, and a fluorescence reporter. The
assay targeted L1 gene and was applied for screening of 100 cervical
smear samples with 97.8% sensitivity and 98.1% specificity.!3® A
similar approach was introduced by Zhao et al.2** by combining RPA
and fluorescence readout into a microfluidic dual-droplet device. This
system was developed for dual detection of HPV16 and HPV18,
reaching an ultralow limit of detection (1 aM, ~1 copy/reaction) in
only 30 min. Moreover, when compared to standard PCR, the
sensitivity of 92.3% and the specificity of 100% on a panel of 20
clinical samples was achieved. However, assay targeted L1 gene that
can be lost during HPV integration into the host genome,*+145
leading to possible false negative results.

Although majority of CRISPR-based studies use some DNA
122-127,129-131,133,137-142

amplification technique before detection,

several works reported also amplification-free  strate-
gies.121:128132.134.146 ap interesting technology called polydisperse
droplet digital CRISPR-Cas-based assay has been introduced by Xue
et al.’® whereby the reaction mixture containing CRISPR-Cas
components and a fluorescent dye-labeled reporter probe was
vortexed with oil to generate multiple droplets. The final protocol
included both Cas12a (cleaving dsDNA) and Cas13a (cleaving ssRNA),
coupled to fluorescent labels generating green (FAM) and red (HEX)
positive droplets, respectively, for a dual detection assay in one
mixture. Hence, the assay could independently detect HPV18 DNA
from 23 cervical smears (Cas12a, HEX) and also SARS-CoV-2 RNA
from 32 nasopharyngeal swabs (Cas13a, FAM). Limit of detection for
HPV was 162 pg/ul of genomic DNA within 20 min of reaction time.
Assay sensitivity and specificity reached 100% for both assay targets,
but it should be noted that number of tested samples was too low for
relevant statistical analysis.

Overall, CRISPR-Cas technology has rapidly entered biosensing
research and has already made a huge impact by increasing specificity

of individual assays in a relatively inexpensive manner. However,
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several technical challenges persist, including off-target activity (i.e.,
cleavage at other than recognition site) or sometimes lower efficiency
of cleavage by caspases.'*” Moreover, when applied to the field of
biosensing, most works relied on pre-amplification step for increased
sensitivity, prolonging overall protocol time. Nevertheless, combina-
tion with quick IATs, as shown for example, in a work by Ganbaatar
who coupled 20 min of RPA reaction with 10 min of CRISPR-Cas12a
cleavage,*?2 could be a promising pathway for its possible use in low-
resource settings.

Results from above studies using CRISPR-Cas system implies that
it offers good sequence resolution at a single nucleotide level, but
discrimination of individual genotypes would require very precise
design of gRNA. Although HPV is a small virus, there is quite large
intra-host sequence variability within highly conserved sequences,
and up to a 1000 unique variants were identified within individual
samples.’*® Our experience thus shows that it is better to use
techniques which recognize longer sequences by using primers or
probes, or to use CRISPR-Cas system at those instances where single

mismatches play a crucial role.

6 | MICROFLUIDICS AND LAB-ON-A-CHIP
TECHNOLOGY—INTEGRATING INDIVIDUAL
STEPS INTO A SINGLE DEVICE

Microfluidic technologies, sometimes referred to as “lab-on-a-chip”
provide an opportunity to create devices or chips that could compete
with classical techniques in biomedical and chemical research.249-12
These low-cost devices can process microliters of solution via
capillary channels in a high-throughput manner, thus reducing the
requirement for samples and reagents. Importantly, all reactions and
washing steps are performed in sealed reaction systems, ideal for
preventing cross-contamination. LOC technology represents rapidly
growing field in DNA diagnostics, and numerous devices were
introduced also for HPV analysis.2>3-167

For example, an interesting innovation was an automated
diagnostics of high-risk HPVs by using machine learning coupled
with single-cell droplet PCR and multiplexed microfluidics chip.>®
Images of droplets to confirm presence of amplified HPV products
were captured by inverted fluorescent microscope with CCD camera,
followed by an analysis using Circle Hough Transform technique for
circle detection and transfer learning of LeNet neural network
(termed droplet-net). Although the assay was performed only on
cervical cancer cell lines and still required relatively expensive
instrumentation, it could pave the way for future automation of
point-of-care diagnostics with the potential to improve accuracy and
decrease overall time and cost. As we mentioned above, sealed
reaction systems may prevent aerosol contamination which is
common in nucleic acid amplification techniques. To further decrease
the risk of contamination, Mou et al. reported a femtoliter-sized
microfluidic hybridization assay without DNA amplification, yet
reaching ultralow attomolar detection limits.*>® The principle was

similar to the hc2 commercial kit, relying on an antibody that captures

DNA/RNA hybrids, but it used femtoliter-sized droplets for concen-
trating enzyme-catalyzed fluorescent products into a small volume to
increase detectable signal, and magnetic beads for accelerating
reaction time. Interestingly it reached better sensitivity than hc2 by
detecting samples with low viral load. On the other hand, the whole
study was conducted with only 20 HPV-positive clinical samples
without using negative controls.

The physics of microfluidics relies on the pumps or pressure to
generate fluid flow, requiring either special instrumentation or
electricity. This, consequently, limits microfluidics-based diagnostics
in low-resource settings. To resolve this issue, paper-based micro-
fluidics (paperfluidics) introduced by Whitesides group in 200748 has
recently garnered much attention due to its ability to passively
transport fluids through capillary action, which circumvents the
problem of pumps or other fluid handling equipment. Such paper-
fluidic platform for HPV analysis was constructed by using solely
paper and adhesive sheets.'®® It integrated all the steps, including
DNA extraction, LAMP amplification, and lateral flow detection of
HPV16 DNA via immunochromatographic strips at the panel of ten
cervical samples. Although two out of five negative samples exhibited
faint positive test lines, most probably due to self-priming of LAMP
primers, this low-cost disposable paperfludic chip could represent a
viable option for quick diagnostics of HPV infection once the issue of
false positives is resolved. A combination of above-mentioned
principles, that is, hybrid capture strategy to avoid DNA amplification
and paper-based assay without a need for pumps, has been very
recently reported by Richards-Kortum group.®? The assay comprised
two-dimensional paper network (2DPN) and a point-of-care sample
preparation protocol to detect HPV16 DNA from exfoliated cervical
cells within an hour. It was conducted not only in controlled
laboratory settings using cervical samples from Salvador but also in
field settings in Mozambique on self-collected samples. As expected,
the accuracy of the field testing on self-collected samples was lower
compared to the laboratory testing, which was attributed to a higher
sample turbidity in the case of self-collection. As authors noted,
additional pretreatment of self-collected samples will be needed to
eliminate false positive results, but otherwise, this study holds great
promise for remote low-resource HPV diagnostics.

Despite the advantages that microfluidic platforms offer, including
options of miniaturization, portability and sealed environment to prevent
contamination, there are still challenges that limit them to reach their full
potential. For instance, manufacturing process is quite complex, not fully
standardized and as such is not ready for mass production.**’ Moreover,
microfluidic devices face challenges when coupled with other platforms,
especially those for imaging recordings, and require trained personnel and
stringent, frequent quality checks that limit their applications especially
for low resources environment.>*? In this sense, paper-based microfluidic
devices are considered the most promising candidates for low resource
settings as they are low-cost, easy-to-use, disposable, and virtually
equipment-free. However, the areas of improvement also exist, such as
high sample retention within paperfluidic channels and higher limits of
detection associated with the traditional visual detection, both of them

leading to relatively low sensitivity of measurement.*”®
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7 | NANOMATERIALS ENHANCING ASSAY
SENSITIVITY

Great progress in nanobiotechnology and in nanomaterial science have
enabled massive development of bioassays and biosensors at the
nanoscale. Nanomaterials show unique mechanical, optical, electrical,
and even magnetic features due to their small dimensions, and enable
ultralow detection limits as a result of their large surface-to-volume
ratios.*’*-174 Distinct nanostructures were introduced, such as gold or
silver nanoparticles, carbon nanotubes, graphene oxide, quantum dots,
polymeric nanocomposites, or even various nanorods or nanowires,
which serve either as carriers for bioreceptor immobilization or as signal-
generating reporters. Frequently, multiple nanomaterials are combined
together to create complex architectures in a single assay to obtain as low
detection limits as possible, but often without any application in real
clinical settings. As such, this pursue for ultrahigh sensitivity is
questionable if not demonstrated on clinical material. Moreover,
nanomaterials are still relatively costly and their possible negative health
and environmental impact has been a matter of numerous discussions.'”>
Various studies have reported penetration and accumulation of
nanomaterials into cytoplasm or even cell nucleus.”>17?

Application of nanomaterials for HPV analysis is relatively
common, but as we discussed above, plenty of reports do not show
feasibility on clinical material.'®9-*8* |nstead, many of them use
“spiking” whereby synthetic sequences are inserted into the serum to
show the percentage of recovered sequences and thus to evaluate
possible matrix effects. Many nanomaterial-based papers that
actually used cervical samples from women tested their assays on a
relatively low number of patients.’®5-2°° For instance, Hong et al.
employed carboxylic group-functionalized magnetic nanoparticles for
split electrochemiluminesce assay for detection of HPV16 based on
gold nanocluster probes. The introduction of various nanomaterials
led to an ultralow detection limit of 6.8 aM, and the assay was applied
to 27 cervical smears with substantial agreement when compared to
hc2 assay. In another small-cohort study, Sun et al. developed a
photoelectrochemical biosensor array (PEBA) for multiplexed detec-
tion of nine HPV genotypes (Figure 3).1® Authors reported the
detection limit of 0.1 copies/pul and analyzed a total of 40 clinical
samples, including 20 HPV-positive and 20 HPV-negative samples.
Relatively large cohort of 209 cervical samples was used for
validation of a novel nanoparticle-assisted PCR assay (nanoPCR) for
detection of E6 genes of HPV16 and HPV18.2%1 Although authors
did not calculate sensitivity and specificity of their nanoPCR assay, it
displayed 10-fold more sensitive detection than that of a conven-
tional PCR, used only few microliters of the sample and allowed the
reaction to reach more quickly the target temperature, hence
shortening overall assay time.

Despite huge advances in nanotechnology, clear benefits of its
application for HPV diagnostics have yet to be demonstrated
especially for low resource settings in terms of simplicity or cost-
effectiveness, and potential health and environmental risks need to
be addressed. In addition, nanomaterials often show lower

recognition efficiencies for target analytes in complex biological

environments, slow kinetics of binding processes due to heteroge-
neous interfaces, and questionable stability of nanomaterial-based
surfaces, which are all issues that need to be taken into an account

when designing biosensing technologies.??

8 | CONCLUSION AND
RECOMMENDATIONS

The recent COVID-19 pandemic has undoubtedly accelerated
development of novel technologies for detection of viral infections,
including HPV. Commonly, HPV is detected at the nucleic acid level
via PCR-based assays, which is considered gold standard. However,
new analytical tools have emerged in last years that could out-
compete them in terms of simplicity, cost, or time efficiency. Various
isothermal amplification techniques were introduced as interesting
alternatives to PCR that obviate a need for thermal cycling, hence
providing an opportunity to construct simple and rapid diagnostic
tools and devices for point-of-care testing. This is nicely evidenced by
for example, numerous lateral flow assays coupled to RPA deployable
in field settings, CRISPR-based systems that improve specificity of
detection, microfluidic and LOC devices integrating all reaction steps
and final readout, as well as diverse nanomaterials which greatly
enhance sensitivity of the measurement. In some cases, LFA devices
or CRISPR-based systems may still benefit from PCR amplification,
but even here the IATs are gaining ground. Major drawback of these
technologies, however, is their insufficient application into clinical
material to prove their usefulness. Until recently, many studies used
only spiking of synthetic HPV sequences into serum to mimic real
settings or utilized cancer cell lines with well-defined HPV status. A
reason for spiking or for using only cell lines is perhaps a lack of
access to high-quality biomaterial from patients that successfully
passed pre-analytical procedures used in sample collection, proces-
sing, storage, and shipping, significantly influencing nucleic acid
integrity. It is worth noting that a number of academic and/or
commercial biobanks exist, including European research infra-
structure for biobanking (BBMRI-ERIC), International Society for
Biological and Environmental Repositories (ISBER), or European,
Middle Eastern, or African Society for Biopreservation and Biobank-
ing (ESBB), which offer human samples and associated data of
standardized quality for research purposes. Another significant
drawback is that most of these technologies were not yet fully
tested in low-resource settings outside well-equipped laboratories or
hospitals. Only few relevant studies, mostly utilizing LFA combined
with RPA®® or paperfludic device with hybrid capture technology,*!
showed performance in low-resource settings in developing countr-
ies. Authors of the former study even estimated a cost of a single test
to be around $5, a very affordable price due to their extraction-free
and PCR-free approach.?® Other authors did not estimate projected
costs of their assays, but it can be expected that by implementing
CRISPR-Cas system, microfluidic devices or nanomaterials, overall
price per test would increase. Furthermore, noncolorimetric-based

(other than naked-eye) end-point detection systems (e.g.,
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amplification. (B) Schematic illustration of the PEBA setup for HPV genotyping. (C) Schematic illustration of the fabricated PEBA for detecting
HPV-related genes. QD, quantum dot. Reprinted with permission from Ref.'8> Copyright 2023 Elsevier.

fluorescence, luminescence or electrochemical) require initial invest-
ments in terms of new instrumentation.

In this review, we tried to highlight those studies where authors
included clinical samples obtained from patients, mostly cervical
smears. However, HPV can be detected also non-invasively, either in
self-collected vaginal swabs, or in a liquid biopsy format, that is, in
urine, blood, or saliva. While cervical smears require a pelvic
examination by a gynecologist, collection of a vaginal specimen for
HPV testing can be performed by the patients themselves, a feature
that is especially attractive in resource-limited areas, making the HPV
testing with self-collected samples as a possible primary screening
alternative.'® A large meta-analysis of 12 studies showed good
accuracy between patient-collected vaginal samples and those
obtained by a clinician, but due to highly heterogeneous data and a
variety of specimen collection devices that have been used in

individual studies, no recommendation was provided.194

Urine is especially attractive since it permits frequent self-
collection and the sampling of large populations to measure for
example, the impact of HPV vaccination programs.'’> Moreover,
urine sampling, unlike cervical sampling, is a more preferred choice

and better accepted by women,?¢

which may lead to increased
population coverage in screening programs. On the other hand, urine
testing faces challenges such as lower HPV load, presence of PCR
inhibitors and contaminating pathogens, and possible higher rate of
false positives due to HPV infection of the urinary tract or the lower
genital tract. Although many studies have shown correlation between

HPV detection in cervix and urine,1?>197-203

they were often very
discrepant due to diverse methodologies used during sampling,
storage, sample preparation, and DNA extraction, and further
optimization and standardization is required.

Regarding the blood analysis, most authors focus on the role of

HPV circulating DNA as a prognostic biomarker in blood of patients
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with primary tumors to monitor advanced stages or possible
metastases.”? 1% Circulating HPV thus does not seem as a suitable
biomarker for eventual screening programs due to low abundance of
HPV in precancerous lesions.2°*2%> Salivary testing is another
noninvasive option allowing for early HPV diagnostics of HNC,
especially for risk stratification of patients with head and neck
squamous cell carcinoma (HNSCC), or for possible monitoring of
recurrence after treatment.?°® However, contradictory conclusions
were drawn when evaluating sensitivity of salivary testing and its
usefulness as a predictive indicator.2°%2°7 Apparently, more studies
are needed to prove salivary HPV as potentially valuable biomarker
for detection of HNSCC. Unfortunately, the potential of advanced
technologies described in this work has not yet been fully utilized in
noninvasive diagnostics of HPV in urine, blood or saliva, or in self-
collected samples in general, such as in vaginal swabs. This
combination, however, is highly attractive and we envision that in
near future, new analytical tools will become available enabling
simple and rapid HPV diagnostics with good precision at the point-of-

care or in low-resource settings.
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