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Abstract

The taxonomic status of strain P5891T, isolated from an Adélie penguin beak swab, was investigated. Based on the 16S rRNA 
gene sequence, the strain was identified as a potentially novel Corynebacterium species, with the highest sequence similarities 
to Corynebacterium rouxii FRC0190T (96.7 %) and Corynebacterium epidermidicanis DSM 45586T (96.6 %). The average nucleo-
tide identity values between strain P5891T and C. rouxii FRC0190T and C. epidermidicanis DSM 45586T were 68.2 and 69.2 %, 
respectively. The digital DNA–DNA hybridization values between strain P5891T and C. rouxii FRC0190T and C. epidermidicanis 
DSM 45586T were 23.7 and 21.4 %, respectively. Phylogenetic trees based on the 16S rRNA sequence placed strain P5891T in a 
separate branch with Corynebacterium canis 1170T and Corynebacterium freiburgense 1045T, while a phylogenomic tree based 
on the Corynebacterium species core genome placed the strain next to Corynebacterium choanae 200CHT. Extensive phenotyping 
and genomic analyses clearly confirmed that strain P5891T represents a novel species of the genus Corynebacterium, for which 
the name Corynebacterium mendelii sp. nov. is proposed, with the type strain P5891T (=CCM 8862T=LMG 31627T).

INTRODUCTION
The genus Corynebacterium, proposed by Lahmann and Neumann in 1896, is a large group of Gram- positive, non- spore- forming, 
rod- shaped bacteria. It belongs to the family Corynebacteriaceae within the phylum Actinomycetota. According to the List of 
Prokaryotic names with Standing in Nomenclature [1], the genus currently comprises 160 validly named species (https://lpsn. 
dsmz.de/genus/corynebacterium, accessed 21 November 2023). Corynebacteria can be found in a wide range of ecological niches, 
such as water, soil, foodstuffs, humans and animals. More than 50 species are of clinical significance, most notably Corynebacterium 
diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, producers of diphtheria toxin and causative 
agents of diphtheria and other diseases in humans and animals [2]. Some Corynebacterium species can act as opportunistic 
pathogens, and some live in the human body as commensals [3–5]. Multiple Corynebacterium species have been isolated from 
animals, including various mammals, reptiles and birds. They are usually considered to be part of a normal microbiome, although 
some are suspected to be causative agents of infections [3].

Specifically in penguins, various Corynebacterium species appear to be an abundant part of the normal oral, cloacal and skin 
microbiome [6–11]. Multiple novel species have been isolated from penguins: Corynebacterium sphenisci [6] and Corynebacterium 
spheniscorum [7], both originating from apparently healthy Magellanic penguins, Corynebacterium antarcticum, Corynebacterium 
marambiense, Corynebacterium meridianum and Corynebacterium pygosceleis [11], originating from apparently healthy Adélie 
penguins, and Corynebacterium megadyptis, isolated from yellow- eyed penguin chicks with diphtheritic stomatitis [12]. Several 
studies have suggested a link between corynebacteria and various penguin diseases, such as diphtheritic stomatitis [8, 12, 13], 
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bumblefoot infections [9], and ocular lesions [14]. However, data on their actual pathogenicity are limited and further research 
is required to clarify their role in the pathogenesis of these diseases.

ISOLATION AND ECOLOGY
Strain P5891T was isolated from an oral swab of an apparently healthy adult Adélie penguin encountered near Mendel Polar 
Station (63.8007397° S 57.8834306° W) on James Ross Island, Antarctica, as part of a project investigating cultivable bacterial 
populations inhabiting the Maritime Antarctic environment and its flora and fauna. During the expedition, the collected swabs 
were stored in transport tubes containing Amies medium with charcoal (COPAN Italia) until processed in the field laboratory 
at Mendel station. The swabs were used to inoculate mannitol salt agar (HiMedia) plates. The plates were cultivated aerobically 
at 30 °C for up to 5 days. Colonies with different morphologies were continuously picked and purified using the streak plate 
technique. The obtained pure cultures were transported to the Czech Collection of Microorganisms (Masaryk University, Brno, 
Czech Republic) and kept at −70 °C as described previously [15] until they were processed.

16S rRNA GENE PHYLOGENY
To ascertain the phylogenetic position of P5891T, a nearly complete sequence of the 16S rRNA gene was obtained using the 
primers pA 5ʹ-  AGAGTTTGATCCTGGCTCAG-3ʹ and pH 5ʹ-  AAGGAGGTGATCCAGCCGCA-3ʹ [16] as described previously 
[17]. After column- purification of the PCR product with the High Pure PCR Product Purification Kit (Roche), Sanger sequencing 
was performed with the same set of primers as for amplification by Eurofins Genomics (Ebersberg bei München, Germany). The 
obtained reads were assembled with the CAP3 tool (https://doua.prabi.fr/software/cap3/) [18]. The 1396 bp- long sequence was 
deposited in GenBank/EMBL/DDBJ under accession number OP099850. When compared to the EzBioCloud database (https://
www.ezbiocloud.net/identify) [19], the sequence exhibited the highest similarity to Corynebacterium rouxii FRC0190T (96.7%) 
and Corynebacterium epidermidicanis DSM 45586T (96.6 %). These values are well below the 98.7 % similarity threshold suggested 
for delineating bacterial species [20, 21], and imply that strain P5891T represents a new species.

The phylogenetic trees were reconstructed using the software mega X [22]. Evolutionary history was inferred using the maximum- 
likelihood (Fig. 1) [23], minimum- evolution (Fig. S1, available in the online version of this article) [24] and neighbour- joining 
methods (Fig. S2) [25] using the Kimura two- parameter model [26] and a bootstrap test [27] based on 1000 replications for 
all three methods. In all the trees, strain P5891T formed a separate lineage together with Corynebacterium canis 1170T and 
Corynebacterium freiburgense 1045T.

GENOME FEATURES
A whole- genome sequence of strain P5891T was obtained within the framework of the Global Catalogue of Microorgan-
isms 10K type strain sequencing project [28], using the BGISEQ sequencing platform. Assembly was performed using the 
software SOAPdenovo (version JUL- 2013) [29]. The sequence consisted of 18 scaffolds; its total length was 3 090 721 bp 
with a G+C content of 63.3 mol%. The sequence has been deposited at GenBank/EMBL/DDBJ under accession number 
JAFLEQ000000000.

The sequence was compared to the genome sequences of the type strains of the most closely related species, as designated by 
the 16S rRNA gene sequence similarity, phylogeny and core genome analysis. Average nucleotide identity (ANI) was calculated 
using the OrthoANI algorithm implemented in the software OAT [30] and digital DNA–DNA hybridization (dDDH) values 
were determined using Genome- to- Genome Distance Calculator version 3.0 (https://ggdc.dsmz.de/) [31], taking recommended 
formula 2 into account. The obtained values shown in Table 1 are well below the thresholds of 95–96 % (ANI) and 70 % (dDDH) 
for differentiating bacterial species [20], confirming the taxonomic novelty of strain P5891T.

Out of the 2326 coding sequences (CDSs) found in the genome of strain P5891T, 1817 CDSs were assigned to known 
orthologous groups and corresponding clusters of orthologous group (COG) categories by eggNOG- mapper version 2.1.7 
and eggNOG database version 5.0.2 [32] (Table S1). The most abundant category was ‘S, function unknown’, accounting for 
14.3 % of CDSs, which is not surprising for a novel species. Moreover, 509 genes (21.9 %) were not assigned to any COG, which 
could be due to the fact that even the evolutionarily closest species are quite distant, so the orthologues of these genes may 
still be unknown. The other most abundant categories were those connected to metabolism, e.g. categories E, G, P and the 
expression of genetic information, i.e. categories J and K, each accounting for more than 5 %. The genome also contained 40 
genes in the category ‘V, defence mechanisms’, indicating that the bacterium possesses some genetic machinery to compete 
with other microorganisms. Strain P5891T also possesses other genomic elements that can be understood as a kind of bacterial 
immunity. In particular, three clustered regularly interspaced short palindromic repeat (CRISPR) arrays were identified with 
CRISPRDetect version 2.4 [33] (Table S2). Moreover, no prophages were found in the genome of strain P5891T by phaster 
(https://phaster.ca/) [34], suggesting that CRISPR- Cas systems may be active.

https://doua.prabi.fr/software/cap3/
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Fig. 1. Maximum- likelihood phylogenetic tree based on 16S rRNA sequences comparison showing the position of strain P5891T within the genus 
Corynebacterium. The percentage of bootstrap replicate trees (1000 replicates) in which the associated taxa clustered together is indicated by the 
values shown next to the branches. All positions with less than 95 % site coverage were eliminated (partial deletion option). The final dataset contained 
a total of 1213 positions. Mycobacterium tuberculosis H37RvT was used as an outgroup. Bar, 0.02 nucleotide substitutions per site.

http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.10886
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Strain P5891T possessed no known antibiotic resistance genes when compared to the comprehensive antibiotic resistance 
database using resistance gene identifiers [35]. This means that the observed resistance to penicillin (see below) is probably 
mediated by one or more genes not included in the database. The virulence potential of the strain is questionable, as the 
genome lacks genes coding surface- anchored proteins spaB, spaC, spaD, spaE and spaF, which form pili responsible for 
adhesion to host cells and belong to widespread virulence factors in corynebacteria [36]. Strain P5891T is unlikely to form 
pili or flagella, as only seven genes were assigned to the category ‘N, cell motility’, consistent with the observed non- motile 
phenotype (see below). On the other hand, two putative genes, rpfI (JZY06_02330) and cwlH (JZY06_00280), coding for Rpf- 
interacting protein and cell wall- associated hydrolase, respectively, were found in the genome with more than 40 % amino acid 
sequence similarity to known genes with blast searches [37]. These genes were previously found in Corynebacterium strains 
responsible for diphtheritic stomatitis in yellow- eyed penguins [13]. No other significant hits (sequence similarity >40 %) 
for known virulence factors were found.

As chemotaxonomic traits of the genus Corynebacterium are well characterized, the presence of the most prominent markers 
was investigated by in silico inference performed by the identification of metabolic pathways based on searching for ortho-
logues in the kegg database [38] using BlastKOALA (https://kegg.jp/blastkoala/) [39], while annotation was completed 
manually using online blast searches [37]. The analysed genome contains gene machinery responsible for the synthesis of 
menaquinones via the isochorismate pathway, which is typical for corynebacteria, specifically the genes menA (JZY06_04590), 
menB (JZY06_04600), menC (JZY06_04605), menD (JZY06_04610), menE (JZY06_04595), menF (JZY06_08370) and menG 
(JZY06_04620). Moreover, the presence of the menJ gene (JZY06_04625) suggests that strain P5891T is able to produce 
saturated menaquinones [40]. Additionally, the genes responsible for the synthesis of mycolic acid, a long- chain fatty acid 
produced by the majority of corynebacteria, were found: fadD32 (JZY06_11625), encoding the long- chain fatty acid AMP 
ligase, pks13 (JZY06_11620), encoding polyketide synthase 13, and cmrA (JZY06_05875), encoding mycolate reductase. The 
adjacent genes fadD32 and pks13 were located in the same operon predicted by the Operon- mapper (https://biocomputo. 
ibt.unam.mx/operon_mapper/) [41]. Despite the absence of the accD4 gene, previously reported to be part of the operon 
[42], the genome contains multiple putative accD subunits (JZY06_11600, JZY06_07745, JZY06_07730, JZY06_03315 
and JZY06_08615) with high sequence similarity to accD subunits that are essential for mycolic acid synthesis [42–44]. 
Furthermore, several genes coding for enzymes responsible for polar lipid synthesis were found, specifically the genes cls 
(JZY06_11040), encoding cardiolipin synthetase, pgsA (JZY06_01815), encoding phosphatidylglycerophosphate synthase, 
ptfP1 (JZY06_01820), encoding phosphatidylinositol mannoside acyltransferase, and pimA (JZY06_01825), and pimB 
(JZY06_00285), both encoding phosphatidylinositol mannosyltransferase. The latter three genes code for key proteins in 
the synthesis of phosphatidylinositol mannoside and phosphatidylinositol dimannoside [45], polar lipids characteristic of 
many Corynebacterium species.

The analysed genome was compared to 139 reference genomes of the genus Corynebacterium available in the RefSeq database 
(9 September 2022, Table S3) [46]. The core genome was reconstructed with BPGA version 1.3 [47] with amino acid sequences 
clustered using usearch version 11.0.667 [48], with an identity cut- off of 50 %. A phylogenomic tree based on the core genes 
was calculated with the BPGA tool [47] using the neighbour- joining method [25], and visualized with the iTOL version 6 tool 
(https://itol.embl.de/) [49]. The core genome comprised 103 genes shared by all the analysed species. The genome of strain P5891T 
carried 764 unique genes not found in any other analysed genome. This is a high number, as the average number of unique genes 
per genome in the dataset was 301. It is important to mention that 58 of the reference genomes used for this comparison are 
draft genomes, which may negatively influence the accuracy of the analysis. Analysis of the core genes confirmed the similarity 
of strain P5891T to Corynebacterium species present in birds. Phylogenomic analysis based on the concatenated sequences of 
103 core genes (Fig. 2) showed that the closest relative of strain P5891T is Corynebacterium choanae, which was isolated from 
the northern bald ibis [50].

Table 1. Percentages of ANI and dDDH between strain P5891T and five closest Corynebacterium species

Species ANI dDDH

C. canis DSM 45402T (NZ_CP047080.1) 70.2 21.6

C. choanae 200CHT (NZ_CP033896.1) 71.0 22.4

C. epidermidicanis DSM 45586T (NZ_CP011541.1) 69.2 21.4

C. freiburgense DSM 45254T (NZ_CP047355.1) 67.6 21.8

C. rouxii FRC0190T (NZ_LR738855.1) 68.2 23.7

http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.6188
https://kegg.jp/blastkoala/
https://biocomputo.ibt.unam.mx/operon_mapper/
https://biocomputo.ibt.unam.mx/operon_mapper/
http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.6188
https://itol.embl.de/
http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.35528
http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.20201
http://doi.org/10.1601/nm.35528
http://doi.org/10.1601/nm.23314
http://doi.org/10.1601/nm.14540
http://doi.org/10.1601/nm.37789
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PHENOTYPE
The Gram stain was carried out using the Poly Stainer System (IUL Instruments), and cell morphology was observed using a 
BX53 light microscope (Olympus). The observed cells were Gram- stain- positive, club- shaped short rods. The KOH lysis test 
method [51] was used to confirm the Gram- staining results. Cellular morphology was further studied using transmission elec-
tron microscopy. Cells were transferred onto a copper grid (TedPella) coated with Formvar/carbon, negatively stained with 1 % 
ammonium molybdate solution, and then viewed under a Philips Morgagni 268D transmission electron microscope (FEI) at 
×8000 magnification and an accelerating voltage of 80 kV. The observed cells had an irregular shape and formed clusters (Fig. S3).

Growth on tryptone soya agar (TSA; Oxoid), nutrient agar (Oxoid), brain heart infusion agar (Oxoid) and Mueller–Hinton 
agar (Merck) at 30 °C was assessed. The growth temperature range was determined in tryptone soya broth (TSB; Oxoid) 
incubated at 5, 10, 15, 20, 30, 37, 42 and 45 °C, and tolerance to salinity was tested in TSB enriched with 5, 6.5, 10, 11 and 
12 % NaCl (w/v). Tolerance to pH range was tested in TSB adjusted to pH 4–11 in 1 pH unit increments using a buffer 
system (pH 4–8, 0.1 M KH2PO4/0.1 M NaOH; pH 9–10, 0.1 M NaHCO3/0.1 M Na2CO3; pH 11–12, 0.05 M Na2HPO4/0.1 
M NaOH). Conventional tests were performed to determine phenotypic properties: motility [52, 53], the production of 
oxidase (OXItest, Erba Lachema), catalase (ID Colour Catalase, bioMérieux), acetoin (VPtest, Erba Lachema), pyrrolidonyl 
arylamidase (PYRAtest, Erba- Lachema), β- galactosidase (ONPG test) [54], urease [55] and lecithinase (egg yolk reaction) 
[56], the reduction of nitrate [57], and hydrolysis of DNA (CM321, Oxoid), aesculin [57], Tween 80, gelatin [58], tyrosine 
[59] and starch [57]. Further phenotypic testing was done using the API 50CH, API Coryne and API ZYM kits (bioMérieux) 
according to the manufacturer’s instructions. The results of the phenotypic tests allowed for the differentiation from closely 
related species determined by 16S rRNA gene sequence similarity (Table 2). The complete characteristics of strain P5891T 
are stated in the protologue. It is acknowledged that some features could be strain- specific, and the description may change 
as further strains of the species are isolated.

Fig. 2. Phylogenomic analysis based on concatenated sequences of 103 core genes of analysed representative genomes. The tree, reconstructed using 
the neighbour- joining method, was calculated using the Bacterial Pan Genome Analysis tool (BPGA), visualized with iTOL.
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Susceptibility to antibiotics was tested using the disc diffusion method on Mueller–Hinton agar (Oxoid) according to the eucast 
standards [60]. The following antibiotics were tested (amount per disc): penicillin G (1 IU), ciprofloxacin (5 µg), gentamicin 
(10 µg), vancomycin (30 µg), clindamycin (2 µg), tetracycline (30 µg), linezolid (10 µg) and rifampicin (5 µg) (Oxoid). Strain 
P5891T was susceptible to all the antibiotics tested except for penicillin G. This corresponded well with the recently described 
Corynebacterium species isolated from Adélie penguins described by Švec et al. [11], in which all the strains of C. marambiense, 
C. meridianum and C. pygosceleis and one strain of C. antarcticum also exhibited resistance to penicillin G, while being susceptible 
to most of the other antibiotics tested (except clindamycin).

Table 2. Phenotypic characteristics allowing differentiation of strain P5891T from its close relatives determined by 16S rRNA gene similarity

All the results were obtained in this study. +, Positive; w, weakly positive; −, negative.

Characteristic Strain
P5891T

Corynebacterium rouxii
CCM 9205T

Corynebacterium epidermidicanis
CCM 9052T

Tween 80 hydrolysis − − +

β- Galactosidase + − −

DNA hydrolysis − + +

Tyrosine hydrolysis − − +

Growth at/with:

  10 °C w − w

  42 °C − − +

  6.5 % NaCl + − +

  10 % NaCl + − −

  pH 5 + − +

  pH 9 + − +

  pH 10 − − +

API Coryne:

  Pyrazinamidase w − +

  Alkaline phosphatase − − +

  β- Galactosidase + − −

  α- Glucosidase + + −

API ZYM:

  Alkaline phosphatase − − w

  Esterase (C4) − − w

  Leucine arylamidase − w +

  β- Galactosidase + − −

  α- Glucosidase w + −

API 50CH:

  Glycerol − + −

  Maltose + − +

  Trehalose − − w

  Glycogen − − +

  d- Tagatose + − −

  Potassium 5- ketogluconate + w −

http://doi.org/10.1601/nm.6188
http://doi.org/10.1601/nm.37789
http://doi.org/10.1601/nm.23314
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Analysis of fatty acid methyl esters was performed from biomasses of all three compared strains: P5891T, C. rouxii FRC0190T and 
C. epidermidicanis CCM 9052T. All strains were grown under the same conditions, on TSA at 30±2 °C for 48 h, to reach the late 
exponential stage of growth according to the four- quadrant streak method described by Sasser [61]. Separation and identification 
of the fatty acids were performed with an Agilent 7890B gas chromatograph according to the Standard Protocol of the Sherlock 
Identification System (midi Sherlock version 6.2, midi database RTSBA 6.21).

Strain P5891T could be clearly distinguished from its closest relatives by a specific combination of the major fatty acids (>10 %), 
cis-9- octadecenoic (oleic) C18 : 1 ω9c (74.2 %) and hexadecanoic (palmitic) C16 : 0 (17.6 %) acids (Table S4). C. rouxii FRC0190T differed 
from strain P5891T by having significantly higher amounts of C16 : 0 (41.2 %), while C. epidermidicanis DSM 45586T differed by the 
presence of four major fatty acids. Tuberculostearic acid (10- methyl C18 : 0) was not present. The fatty acid profile and major fatty 
acids detected in strain P5891T were in agreement with those of other Corynebacterium species, and the high amount of ‘oleic’ 
acid allowed clear differentiation from its closest phylogenetic relatives [3].

DESCRIPTION OF CORYNEBACTERIUM MENDELII SP. NOV.
Corynebacterium mendelii (men.deʹli.i. N.L. gen. n. mendelii of Mendel, named in honour of Johann Gregor Mendel, the founder 
of genetics, an eponym of Johann Gregor Mendel Antarctic station, where the type strain was isolated).

Cells are Gram- stain- positive, non- spore- forming, irregular short rods, 0.9–2×0.7 µm, occurring predominantly in clusters. 
Grows well on TSA, nutrient agar, brain heart infusion agar and Mueller–Hinton agar at 30 °C. Colonies on TSA plates are 
creamy, circular with entire margins, slightly convex, smooth and glistening when cultivated at 30 °C for 2 days. Grows on 
TSA at 10–37 °C, but not at 5 and 42 °C. Grows in TSB containing 10 % NaCl, but not 11 %. Grows in TSB with pH adjusted to 
5–9; pH 10 and pH 4 inhibit growth. Catalase positive and oxidase negative. Produces β- galactosidase (ONPG test). Negative 
for the production of pyrrolidonyl arylamidase, acetoin, urease and lecithinase (egg- yolk reaction), reduction of nitrate, 
and hydrolysis of Tween 80, gelatin, starch, aesculin, DNA, tyrosine and casein. The major fatty acids are C18 : 1 ω9c and C16 : 0.

Enzymatic reactions tested with the API ZYM kit gave positive results for β- galactosidase and α- glucosidase, weakly posi-
tive results for esterase lipase (C8), acid phosphatase and naphthol- AS- BI- phosphohydrolase, and negative results for alkaline 
phosphatase, esterase (C4), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, α- chymotrypsin, 
α- galactosidase, β- galactosidase, β- glucuronidase, α- glucosidase, β- glucosidase, N- acetyl-β- glucosaminidase, α- mannosidase 
and α- fucosidase.

The API Coryne kit gave positive results for the production of β- galactosidase and α- glucosidase, and fermentation of glucose 
and maltose, and a weakly positive result for the production of pyrazinamidase. Results for the reduction of nitrates, production 
of pyrrolidonyl arylamidase, alkaline phosphatase, β- glucuronidase, N- acetyl-β- glucosaminidase, aesculin, urease and gelatinase, 
fermentation of ribose, xylose, mannitol, lactose, sucrose and glycogen were negative.

The API 50CH kit gave positive results for the utilization of d- galactose, d- glucose, d- mannose, maltose, d- tagatose and potas-
sium 5- ketogluconate, a weakly positive result for the utilization of d- fructose, and negative results for the utilization of glycerol, 
erythritol, d- arabinose, l- arabinose, d- ribose, d- xylose, l- xylose, d- xylose, methyl β- d- xylopyranoside, l- sorbose, l- rhamnose, 
dulcitol, inositol, d- mannitol, d- sorbitol, methyl α- d- mannopyranoside, methyl α- d- glucopyranoside, N- acetylglucosamine, 
amygdalin, arbutin, aesculin ferric citrate, salicin, cellobiose, lactose, melibiose, sucrose, trehalose, inulin, melezitose, raffinose, 
starch, glycogen, xylitol, gentiobiose, turanose, d- lyxose, d- fucose, l- fucose, d- arabitol, l- arabitol, potassium gluconate and 
potassium 2- ketogluconate.

The type strain, P5891T (=CCM 8862T= LMG 31627T), was isolated from a beak swab of an Adélie penguin (Pygoscelis adeliae) 
on James Ross Island, Antarctica. The genomic G+C content of the type strain is 63.3 mol%. The GenBank/EMBL/ DDBJ acces-
sion number for the 16S rRNA sequence of the type strain is OP099850, and the whole- genome sequence accession number is 
JAFLEQ000000000.
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