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Abstract

In cyber security education, hands-on training is a common type of exercise to help
raise awareness and competence, and improve students’ cybersecurity skills. To be
able to measure the impact of the design of the particular courses, the designers need
methods that can reveal hidden patterns in trainee behavior. However, the support of the
designers in performing such analytic and evaluation tasks is ad-hoc and insufficient.
With unsupervised machine learning methods, we designed a tool for clustering the
trainee actions that can exhibit their strategies or help pinpoint flaws in the training
design. By using a k-means++ algorithm, we explore clusters of trainees that unveil
their specific behavior within the training sessions. The final visualization tool consists
of views with scatter plots and radar charts. The former provides a two-dimensional
correlation of selected trainee actions and displays their clusters. In contrast, the radar
chart displays distinct clusters of trainees based on their more specific strategies or
approaches when solving tasks. Through iterative training redesign, the tool can help
designers identify improper training parameters and improve the quality of the courses
accordingly. To evaluate the tool, we performed a qualitative evaluation of its outcomes
with cybersecurity experts. The results confirm the usability of the selected methods
in discovering significant trainee behavior. Our insights and recommendations can be
beneficial for the design of tools for educators, even beyond cyber security.
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1 Introduction

The shortage of cybersecurity workforce poses a critical danger for current companies
((ISC)? 2022). As cybersecurity skills require higher-order thinking (McMurtrey et al.,
2008), the best way to develop and ameliorate these abilities is through practical exer-
cises that help raise awareness and competence and improve students’ cybersecurity
skills.

Regardless of the educational subject, tutors make intensive efforts to create, orga-
nize, and continually improve their hands-on courses. In contrast to many learning
areas that produce tangible output suitable for checking, analysis, or assessment, e.g.,
a code of programming courses, practical cybersecurity training evinces a strong
process-oriented characteristic. Tasks like “search for a vulnerability on server X”
produce only sparse behavioral data that limit tutors’ understanding of what trainees
were really doing to solve the task. Therefore, we strive to support their endeavor
by developing learning analytics tools to help tutors of cybersecurity hands-on exer-
cises learn from conducted training sessions. Moreover, we apply methods of visual
analytics to design and deliver easy-to-use analytical applications usable in practice.

1.1 Cybersecurity training background and limitations

Cybersecurity education can take many forms, from table-tops and online quizzes
to hands-on drills. Our approach is based on data collected from hands-on training
sessions organized in so-called cyber ranges (Kniipfer et al., 2020; Ukwandu et al.,
2020; Yamin et al., 2020; Chouliaras et al., 2021). They serve as safe virtual environ-
ments emulating computer networks and enabling a data analyst to gather traces of
trainees’ behavior. The data has the form of event logs that can be further aggregated
into relevant higher-level features for clustering.

However, even in the area of practical cyber exercises organized in cyber ranges,
there are significant differences. Some of them follow free structure and rules, aim-
ing to mimic real conditions. Typically, so-called cyber-defense exercises (CDX) are
intended to train professionals (Eagle, 2013; Dasgupta et al., 2013). These compe-
titions involve many teams like blue teams of defenders, red teams of attackers, or
white teams responsible for the organization and compliance with rules. The com-
plex scenarios of CDXs and many involved user roles introduce extremely variable
behavior. On the contrary, training of beginners, typically students, often follows
puzzle-based gamification principles of the educational content, where puzzles are
used as a metaphor for getting students to think about how to frame and solve unstruc-
tured problems (Michalewicz & Michalewicz, 2008). In cyber security, such exercises
are referred to as Capture the Flag (CTF) games (Werther et al., 2011; Davis et al.,
2014, §vébensk)’/ et al., 2018; Kucek & Leitner, 2020).

In what follows, we focus primarily on puzzle-based hands-on exercises organized
as time-restricted (usually supervised) training sessions. The formal puzzle-based
structure of CTFs enables us to select relevant features for clustering-based analytical
methods and overcome the gap between the raw data and analytical goals.
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1.2 Analytical background and challenges

Data analysis can be conducted in different phases of a training life cycle. Based on
the classification provided by Oslejsek et al. (2021), objectives of this paper address
the post-training analysis of the quality of training exercise (V4) and behavior analysis
(Vs). We apply clustering methods on behavioral event logs collected during the exer-
cise to find common correlations (often subtle) in the behavior of groups of trainees.

Clustering techniques are among the unsupervised machine learning methods used
to group data features by their similarity (Madhulatha, 2012). Their potential use in
education is to identify typical or exceptional behavior of students, which may not
be immediately obvious from individual data records. Group clusters and outliers
observed in the data can raise hypotheses about used training strategies or features of
training scenarios that analysts can further explore. Behavioral patterns revealed from
cybersecurity exercises could be used, for instance, to estimate trainees’ cybersecurity
skills and the effectiveness of their actions, unveil attack-defense strategies, or identify
possible issues in training scenarios.

Clustering methods deal with features extracted from raw data. For example, if
we have the Bash commands each trainee used in a Linux server to protect it (i.e.,
the raw data), we can extract a feature like the number of commands and use it to
cluster trainees into groups with respect to their efficiency (the fewer commands used
to protect the server, the more effective the trainee was). Multiple features are usually
combined to get meaningful behavioral clusters.

Even this trivial example demonstrates that features (the number of commands)
and analytical goals (analyzing the efficiency of trainees in protecting the server) go
hand-in-hand. Available raw data limits possible features and then possible analytical
goals, and vice versa. Matching them up is challenging and requires employing some
iterative strategy.

Also, the feature extraction process itself can be limiting, as it must be com-
puted automatically. Suppose, for instance, we have individual Bash commands used
for some cybersecurity task in the raw dataset. While counting them is simple and
straightforward, what if we would like to define the correctness of command sequence
to protect the server feature? In this case, assessing the correctness of an arbitrary
sequence of commands algorithmically can be very difficult. Therefore, this feature
can be considered too ambiguous and practically unusable for automated clustering.

This short discussion demonstrates that the definition of realistic analytical goals
backed by available data and automatically retrievable features is challenging. In this
paper, we apply an iterative visual-analytics development process to define analytical
goals for data from CTF training sessions and to design and evaluate a practically
usable analytical application.

1.3 Objectives

We aim to contribute to the state of the art of behavioral analysis in education practice
with the following objectives:
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e The formulation of analytical goals and related clustering method for the post-
training analysis of hands-on cybersecurity Capture the Flag games.

e The design of an exploratory visual-analytics tool to support tutors in clustering-
based behavioral analysis of trainees.

e The evaluation of the practical usability of the clustering method and visualizations.

Different stakeholders can benefit from the research. Mainly:

e Researchers can follow our approach to define additional analytical goals related
to hands-on cybersecurity education or to apply described principles in different
educational domains.

e Developers of cybersecurity training platforms can adopt and integrate our tool
into their analytical dashboards.

o Tutors of CTF training sessions can use the proposed clustering-based analysis
to spot their missteps during their tutoring. Or to explore exceptional or typical
behavior of trainees.

e Designers of training content can use the proposed clustering-based analysis to
notice an inaccurate or faulty training design.

1.4 Research method

Our approach to the clustering-based behavioral analysis of CTF trainees is based
on the conceptual model for the visual analysis process Sacha et al. (2014), which
is characterized by the interaction between data, visualizations, models of the data,
and users discovering knowledge, as shown in the right-hand side of Fig. 1. The idea
lies in automatically extracting features from raw data for a suitable clustering algo-
rithm (the model part in the Figure) and gaining knowledge about trainees’ behavior
by interactively adjusting and exploring the data and clustering results via intuitive
visualizations.

We applied the Nested Model (Munzner, 2009; Meyer et al., 2012) methodology
to propose a relevant clustering method and deliver practically usable exploratory
visualizations. This methodology guides designers of visual analytics tools through
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Fig. 1 The depiction of the whole data clustering process, including data collection, extraction, and appli-
cation of the clustering algorithm
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the whole process and enables them to independently validate each of its layers. The
nested model consists of four phases:

Domain problem and data characterization aims to get familiar with the target
domain. At this stage, we benefited from close collaboration with domain experts
— tutors of hands-on cybersecurity courses, who gave us the necessary insight into
their needs and actions. We conducted unstructured interviews and field observations
of the hands-on cybersecurity training sessions. Furthermore, we collected data from
the training sessions that consisted of succeeding tasks to solve. We focused on the
training events described in Section 3.1 in more detail. A qualitative evaluation was
then held to validate the fulfillment of the initial needs.

Operation and data type abstraction aims at mapping the input problems onto a more
specific description. We identified the main needs of the organizers of the training
sessions and transformed them into three analytical goals posed in Section 3.2. Each
goal focuses on a different aggregation technique that utilizes data clusters to help
identify three types of training data outcomes. After identifying those main areas in
the form of requirements, we needed to determine the main measures that could help
align the necessary training values in the form of features. We selected six of them,
as defined in Section 3.3. A Simple Ease Question (SEQ) questionnaire was used to
measure the outcomes related to the use of the tools.

Visual encoding and interaction design aims to interconnect visualization elements
with interaction strategies. Once having the necessary characteristics, we had to encode
the data into a suitable visual representation. As a result, we designed two types of
visualization that deal with clustered data. They are described in Section 4. We then
used the System Usability Scale (SUS) to measure the usability of the tool in the given
context. The whole evaluation is discussed in detail in Section 5.

Algorithm design aims at carrying out the implementation of the visual encoding.
We selected the unsupervised machine learning algorithm k-means++, which clusters
data according to the measures (features) from the previous steps. To validate the
selected approach, we measured the performance of the algorithm on different sizes
of datasets. The results are discussed in Section 5.5.

2 Related work

Clustering is an essential part of data mining. The generic state-of-the-art overview
of traditional and recently proposed clustering methods and their application domains
can be found in Ezugwu et al. (2022).

Educational Data Mining (EDM) is an emerging discipline that exploits statistical,
machine learning, and data mining algorithms over the different types of educational
data (Romero & Ventura, 2010; Salloum et al., 2020). Dutt et al. (2017) provide a com-
prehensive overview of EDM techniques. Their educational data clustering process
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explains important steps in the design of clustering approaches. We adopt these steps
within the nested model to design and validate visualization systems (Munzner, 2009),
which we used to develop a practical exploratory tool for cybersecurity education.

A number of approaches aim to identify the effectiveness or pinpoint distinct student
strategies in specific types of courses. Specific solutions can be found in the literature
addressing, for instance, student performance in generic courses (Durairaj & Vijitha,
2014), classification of students of small online courses by features adopted from
business systems (Wang, 2021), revealing patterns of engagement in massive open
online courses (Khalil & Ebner, 2017), or understanding how students approached
solving a particular programming problem (Yin et al., 2015).

In the area of cybersecurity education, which is the primary subject of our research,
Svébensky et al. (2022) applied techniques of pattern mining and clustering to analyze
the usage of command-line tools in hands-on cybersecurity exercises, aiming to support
the automated assessment of students. Our solution focuses on different aspects of
EDM - revealing gameplay strategies and possible flaws in the training content.

Despite the primary focus on fairness, the recent survey paper Le Quy et al. (2023)
brings a useful classification of EDS tasks that use clustering models. Among them is
the category “students’ behavior, interaction, engagement, motivation, and emotion,”
which our research falls into and which provides a comprehensive overview of specific
approaches, including the usage of k-mean clustering models.

Since clustering results can be influenced by the algorithms used, multiple stud-
ies compare the performance of clustering methods in EDM. DeFreitas and Bernard
(2015) compared partition-based (k-means), density-based (DBSCAN), and hierar-
chical (BIRCH) methods to determine which technique is the most appropriate for
performing clustering analysis within the Learning Management Systems (LMS), e.g.,
Moodle. Hooshyar et al. (2020) proposed an automatic comparative approach utiliz-
ing multiple internal and external performance measures to compare and accordingly
recommend the most suitable clustering method for each LMS dataset.

The results of these studies indicate that the performance of clustering algorithms
vary depending on the type of data, its size, and the performance measures being used.
Moreover, these studies focus on LMS data from long-term courses. Our application is
specific in that we do not use data from a general LSM but particular data from hands-
on CTF games. Therefore, we chose the k-means++ algorithm (Arthur & Vassilvitskii,
2006) — an improved version of k-means partitioning (Lloyd, 1982). This partition-
based approach belongs to the top 10 algorithms in data mining (Wu et al., 2008) and
also the most frequently used clustering methods by EDM and learning analytics (Dutt
etal., 2017).

3 Data clustering

In this section, we explore three components of the visual analysis process (Fig. 1)
that are required for the successful design of appropriate visual-analysis tool: Raw
data, Model (i.e., features and clustering algorithm), and the formulation of analytical
goals suitable to obtain Insights and knowledge.
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3.1 Raw training data

Modern cyber ranges usually collect data in the form of event logs triggered by the
trainees in the platform during the training session. For example, the Locust 3302 CTF
game (Svdbensky et al., 2018) is split into six consequent levels, each representing a
single cybersecurity task — puzzles from the puzzle-based gamification perspective.
The goal of the tasks is to

scan a computer network,

search for vulnerabilities on a web server,
exploit the server,

crack the SSH password,

use the SSH password to steal data.

Successful completion of one task is required before proceeding to the next one.
Trainees can receive various hints or a complete step-by-step solution.

The gathering of raw data is depicted on the left-hand side of Fig. 1, where a trainee
interacts with the cyber range, and the interactions are stored in the form of event
logs in a database. In general, the puzzle-based gamification produces two types of
events that could be used to track the behavior of individuals and classify them: (a)
logs capturing the game state, e.g., when a trainee took a hint or finished the task, and
(b) commands used to find a solution of a task, e.g., the nmap used for scanning the
network.

We used the open-source KYPO Cyber Range Platform (KYPO CRP) [Vykopal et
al. 2017] to collect data from multiple games and design the clustering methods. Types
of events produced by this cyber range are discussed in detail in Macdk et al. (2022).
They include game events, command histories, and the usage of the Metasploit tool.
Considering the analytical goals outlined in Section 3.2, we utilize only a selected
subset of game events for the clustering, omitting other data collected by the cyber
range. We show that even with such limited data, we can obtain relevant clusters useful
for learning analytics. Nevertheless, the unused data can be employed in the future to
address other analytical goals, simply by following the same principles as discussed
in the remainder of the paper.

Events used for clustering are summarized in Table 1 and the whole dataset is also
available among the supplementary materials. The events are related to the higher-
level abstraction of puzzle-based gamification. The LevelStarted and LevelCompleted
events encode the start and end of each puzzle — a cybersecurity task called game
level. If a task is successfully solved, the trainee finds a flag (hidden text), which is
used to proceed to the next level. The CorrectFlagSubmitted and WrongFlagSubmitted
events capture trainees’ attempts to proceed to the next level. The assessment aspects
of exercises are captured by the HintTaken and SolutionDisplayed events that are
penalized.

All events are equipped with a timestamp, absolute training time, trainee ID, and
level ID to trace walkthroughs of individual trainees. Besides this, additional records
that vary depending on the event’s type can be present. Relevant attribute types are
summarized in the last column of Table 1 and used in the analytical workflow either
for feature extraction, data clustering, or exploratory visualizations.
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Table 1 Training events and their meaning

Event Description Event-specific records
LevelStarted The trainee started a new maximum achievable score
level.
LevelCompleted The trainee successfully awarded score
finished the level.
WrongFlagSubmitted The trainee submitted a provided flag (text), correct
wrong flag. flag (text), penalty score
CorrectFlagSubmitted The trainee submitted a provided flag (text)
correct flag.
HintTaken The trainee took a hint. hint title, hint wording,
penalty score
SolutionDisplayed The trainee viewed a level ID, solution wording,
complete task solution. penalty score

3.2 Analytical goals

Based on our long-term collaboration with domain experts on cybersecurity education,
we identified three areas where a clustering tool could help improve the impact of
current hands-on training programs on trainees (the insight and knowledge artifact in
Fig. 1) and, simultaneously, for which common cyber ranges produce relevant event
logs. We formulated them into three analytical goals.

G1: Examine typical gameplay strategies. The gamification process reflects the initial
vision of a training designer who transfers ideas into game elements like abstraction,
challenges, and rules (Kapp, 2012). However, the gameplay of real trainees often
differs from these expectations as the users adapt to real-time conditions (time press,
assessment rules, etc.) or their knowledge (e.g., using commands or steps leading to
solving a task in an unexpected way).

Traditionally, the divergence of users’ behavior from the expected one is analyzed
by using so-called conformance checking (van der Aalst, 2016; Weiss et al., 2016;
Svébensk}’/ etal., 2022), where a model of expected behavior is required, which makes
these approaches laborious and prone to errors. On the contrary, clustering could
reveal different gameplay strategies without this prior knowledge. The idea lies in the
computation of behavioral clusters related to common gameplay strategies, paying
attention to bigger clusters since they represent significant “herd behavior.”

For example, suppose that we are able to cluster trainees by their dependency on
using hints. If a significant group of trainees in the training session prefers taking
hints while solving tasks, then this behavior can be considered a gameplay strategy
indicating that taking hints can be more advantageous than making own effort to
find the correct solution. On the contrary, if no such significant group is observable
or there are only several individuals with different patterns of using hints (e.g., in
different tasks), then the analyst would conclude that the training session does not
evince a significant strategy related to using hints.
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G2: Identify flaws in training design. Proposing educational content is a creative
process that is always prone to errors. Recurring behavioral patterns in trainees’ pro-
gression (such as the inability to solve a task even after using hints) may help the
training designers to find flaws in the training design (e.g., the hint is useless or con-
fusing). Identifying such situations can lead to more precise task delimitation and thus
improve the quality of the training.

Clustering can help identify such situations and allow training designers to adapt
game parameters (time limits, assessment rules, etc.) or game content (e.g., the wording
of hints). Flaws can be observed using two approaches.

First, an analyst could extract specific flaw-relevant features from the raw data and
use the clustering to determine whether a significant group of trainees struggled from
such a potential flaw. For example, features encoding the “frequency of displaying
solution at the very last level” could be used to indicate insufficient time allocated for
the training (with respect to trainees’ skills).

Another flaw-detection approach is based on GI and expert opinion on gameplay
strategies. In this case, a training designer can intentionally search for clusters of
gameplay strategies that might indicate some trouble. This approach could be more
practical because we usually aim to identify unknown flaws.

Regardless of analytical workflow, more attention should be paid to larger clusters
because they represent significant behavior (a shortcoming encountered by multiple
trainees).

G3: Identify outliers. While the analytical goals G/ and G2 primarily target majority
behavior, finding individuals or small groups with certain characteristics is also impor-
tant. It is beneficial to identify exceptionally skilled people or rare gameplay strategies
that are not desired in a certain course or scenario, for instance. However, this sparse
behavior is often hidden in the amount of data, which makes its identification diffi-
cult. Therefore, the analytical tool has to provide a solution for these contradictory
requirements: searching for typical or rare behavioral patterns.

Identification of outliers represents a mixture of G/ and G2 analytical workflows.
Analysts should search for clusters related to gameplay strategies or the identification
of flaws, be able to recognize small clusters (or individuals), and then assess their
importance either using expert knowledge or comparing revealed behavior with “herd
behavior” (i.e., bigger clusters). The solution to this issue lies in using proper visual-
ization techniques that can emphasize small clusters and outliers alongside significant
groups of trainees.

3.3 Extracted features

Considering analytical goals GI-G3 and raw data produced by the cyber range, the
following features reflecting trainees’ game-play style were chosen for automated
extraction. They can be computed for the whole training, e.g., the total number of
hints taken by a trainee during the training session, or for a selected level, i.e., the
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number of hints taken by a trainee at level X. Which option is used depends on the
granularity of the analysis, as discussed in the tool design in Section 4.

Defined features can be divided into three categories. First, we chose two main
features that can be easily extracted from logs by counting specific events of individual
trainees:

e F1: The number of submitted wrong flags. A high number can highlight trainees
who could not reach the milestone. This may be due to an intentional strategy where
the trainee is trying to guess the correct answer (GI) or as a result of a flaw, e.g.,
confusing task description or hints, where the trainee struggles with finding the
correct solution, being convinced of the correct flag (G2).

e F2: The number of taken hints. If a trainee uses more hints to find the solution
than others, it can again indicate either intention or trouble. It can be the result of
the trainee’s deliberate strategy, where he or she wants to go through the game or
a level with minimum effort (G1), or the consequence of a wrong game design,
e.g., a useless hints or too difficult assignment (G2).

While the previous features represent general statistics that can be easily obtained
from raw data by counting corresponding event logs, the following two features have
to be computed by analyzing sequences of events in individual trainees’ walkthroughs:

e F3: Time spent after using a hint. This feature calculates the time between taking
a last hint and providing the correct flag, i.e., solving the task. If the data from
the whole game are examined, not just from one level, the value is obtained by
averaging the trainee’s values across all tasks. In both cases, long times should
indicate the uselessness of hints (G2).

e F4: Wrong flags submitted after a hint: Similarly to the previous feature, if
a hint is useful, it should not be accompanied by many wrong flags afterward.
Otherwise, it may indicate a flaw in the game design (G2). When examining the
whole game, the values from individual levels are averaged.

Since both F3 and F4 strictly indicate design flaws, their absence or presence in
join clusters with FI and F2 can help analysts to assess whether the trainees’ behavior
is due to errors in the game design (G2) or deliberate strategies (GI). Although the
features F'/-F4 do not mention G3 explicitly, they are also relevant to identifying
outliers. The only difference is in looking for rare vs. obvious behavioral patterns.

The last two features introduce unifying indicators of the overall trainees’ success
or failure:

o F5: The total time played. The differences in the amount of time spent playing
CTF can indicate different skills or interests. Extremely long or short playing time
should always attract an analyst’s attention because it can indicate a talented or
indifferent individual (G3). However, a shorter time does not automatically mean
a better trainee. A frustrated trainee, for instance, could use hits or solutions to go
through the game as quickly as possible without any effort. Only if this feature is
used with other features, then a real reason can be observed. On the other hand,
the appearance of a long playtime together with a high number of taken hints
(FI) is quite obvious because the reason for taking hints is often the lack of time,
typically at the end of the training session. If this behavior is exceptional in a group
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of trainees, then we could interpret it like an intentional “do my best during the
game, then use hints when the end approaches” strategy (G1). On the contrary, if
this behavior is typical, then it could be interpreted instead as a design flaw (the
training scenario is too complex for the allocated time).

e F6: The total score. A score earned by trainees can give a straightforward insight
into the overall trainee success since it includes points for successful levels or
penalties for used hints or for skipped levels. While the total time play provides
only a very simplified view of the trainees’ success, a total score introduces a
more precise assessment. Besides the use cases mentioned in F'5, the combination
of total time and total score brings yet another analytical possibility. Trainees who
quickly gain a high score can be considered talented or skilled, and vice versa.
This makes their discovery easier.

3.4 Clustering method

As an unsupervised data mining technique, clustering of the provided data does not
require pretraining models and, therefore, does not require human intervention. Many
approaches to clustering exist nowadays. We can divide them into several categories —
the most widely used include overlapping, partitional, and hierarchical clustering (Rai
& Singh, 2010). At the same time, a number of comparisons of these methods is
available (e.g., Rodriguez et al., 2019; Gelbard et al.,2007; Fraley and Raftery, 1998)
for various requirements.

In our case, we aimed at the technique as a proof-of-concept, which would help us
determine the fit of the whole approach of clustering for cybersecurity training data
analysis. Partition-based algorithms are widely used in various fields because of their
easy implementation (MacQueen et al., 1967). The most typical partitional method
is K-means (Jain, 2010). The K-means algorithm is useful for our use case since it
can adapt to sparse matrix data sets and efficiently organize large data sets. It is also
suitable for numerical values that we use because it measures the squared Euclidean
distances in the clustered data. However, the number of clusters and the selection of
initial centers can significantly impact the clustering results of the K-means algorithm.

In our solution, we therefore use an improved K-means++ variant (Arthur & Vas-
silvitskii, 2006) that provides better results. More specifically, it does not allocate all
the cluster centers randomly. Instead, it chooses the first centroid randomly and then
selects the remaining clusters from the rest of the points with probability proportional
to its squared distance from the point’s closest existing cluster center.

The algorithm requires specifying how to calculate the similarity of features. As the
features F'/—F6 represent numbers, their combination defines the points in Euclidean
space that can be measured by the Euclidean distance.

The algorithm takes the desired number of clusters k and points (features) to be
classified as input. It divides the data records into k classes, starting with randomly
selecting k data points as cluster centers. It then improves the clustering results by
repetitively recalculating the centers of clusters by averaging cluster members.
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Fig.2 Scatter plot visualization. On the left-hand side, it displays the wrong flags submitted in relation to
the time of gameplay. It is distributed in 5 clusters. The right-hand side (with 4 clusters) shows how many
wrong flags the trainees submit after asking for a hint

4 Visual-analysis tool

To support clustering-based post-training analysis covering goals G/-G3, we designed
and implemented an exploratory tool!. Event logs generated by the KYPO Cyber
Range are stored in the ElasticSearch no-SQL database. Features F/-F6 are extracted
by transforming and aggregating the raw event logs. The developed API unifies the
aggregation services so that new features can be integrated in the future.

Raw data and data clusters produced by the k-means++ algorithm are consumed by
several complementary visualizations (the Visualizations component in Fig. 1). Their
full integration into the open-source cyber range provides an off-the-shelf selection of
training sessions and their game levels, making the analysis comfortable and available
right after a training session. This section explains key visualization principles and
design decisions on several examples.

The analytical tool provides two primary views, both equipped with an interactive
estimation of optimal clusters. Both visualizations are discussed in what follows.

4.1 Scatter plots

The scatter plot views provide a detailed comparison of a pair of features, as shown in
two examples in Fig. 2. Points represent individual trainees, while the color denotes
the clusters identified by the clustering algorithm from the distribution of points on
the chart (their x and y coordinates). Points are semitransparent — a darker shade
of the same color indicates multiple trainees with the same feature values. Axes are
normalized according to data samples to provide relative values. Therefore, number
one represents the time of the slowest trainee or the maximum number of wrong flags
submitted by some trainee, for instance.

! The link to the source code, together with supplementary materials, is available at https://eait.surge.sh/.
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The tool predefines plots of two specific pairs of features. They were selected
in accordance with the domain experts’ preferences, but other pairs can be easily
integrated or selected dynamically. Both pairs primarily address possible flaws in the
game settings (G2).

Wrong flags vs. time

A scatter plot dealing with the wrong flags submitted (F'1) and time played (F5) features
show how straightforward or confusing the training or task was in general or for
individuals. For example, many wrong flags submitted over a long time period (the
upper-right quadrant of the graph) can indicate that the task was rather difficult for
trainees. Many wrong flags submitted over a short time period (points located near the
right half of the x-axis) can indicate trainees who try to guess the correct flag. Points
located close to the y-axis indicate trainees who were rather successful in finding a
correct solution (in variable time).

To infer hypotheses or conclusions about behavioral aspects, the analyst has to
consider the distribution of individual points and whole clusters on the chart. In the
left-hand side scatter plot in Fig. 2, one can see two outliers — the yellow and violet
clusters with a single trainee. Their positions on the right-hand side of the graph show
they had trouble completing the training. Especially the most-right violet outlier close
to the x-axis indicates suspicious behavior as the trainee has finished the training very
quickly, using many wrong flags. In general, since many trainees submitted many
wrong flags in a relatively short time (the lower-right quadrant of the graph), it might
point to some inaccuracy in the task assignment.

Wrong flags vs. time after using a hint

The combination of wrong flags after using hint (F4) and time spent after using a hint
(F3) features shows that if a trainee used a hint, how useful it was. The main assumption
is that once a trainee reads a hint, the solution should be more straightforward, with
only a minority of succeeding wrong flags. On the contrary, when many trainees still
struggle with the solution, the situation can indicate a faulty or insufficiently explained
hint.

Like the previous scatter plot view, this one also helps point out the wrong parame-
ters of the training G2 or discover possible outliers who submit too many wrong flags
even after taking a hint G3.

The right view in Fig. 2 shows an example. As the graph contains only trainees who
took any hint when solving a task, fewer points indicate a simpler task and vice versa.
Points close to the y-axis can indicate a possibly confusing hint where the trainees
could finish the task quickly at the cost of repeatedly providing an incorrect flag. On the
contrary, points located near the horizontal x-axis can be interpreted as the existence
of useful hints that lead to a correct solution without mistakes. The time of finding the
solution (the distribution of points along the x axis) is not that important in this case.

Therefore, it might appear that a chart with points predominantly located at the
bottom part could be considered a well-designed game level. However, it is true only
for games that are organized to teach new cybersecurity concepts. Other types of
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hands-on sessions can produce different expected distributions. For instance, in tests
or competitions, multiple wrong flags in a short time would be considered expected
behavior due to time pressure. Therefore, the analyst needs to decide what is obvious.

4.2 Radar charts

The radar chart view depicted in Fig. 3 represents a dominant visualization for the
analysis of gameplay strategies. Unlike in scatter plots of two values, multivariate
features are captured compactly as two-dimensional volumes that clearly visualize
commonalities between samples and help recognize more compound strategies or
individual outliers (Chambers et al., 2018).

Similarly to the scatter plot views, either the whole game results or the results of
selected game levels can be chosen. The color shapes help to distinguish different
strategies visually. The number of shapes corresponds to the number of computed

Dataset with 34 trainees in total

Maximum time after hint

Wrong flags

Hints taken

Two outliters, submitted many

Score-‘lbtai Timé layed = . -
s plays wrong flags but finished fast
Two outliters. without hints.

Struggled with

hints, submitted  Cluster with 2 trainees Cluster with 2 trainees Cluster with 4 trainees
many wrong Maximum time after hint Maximum time after hint Maximum time after hint
flags and played |
for a long time. Wrong flags Hints taken Wrong flags Hints taken Wrong flags || Hints taken

Scoretotal Time'played Scoretotal Time'played Scoretotal Time played

Cluster with 5 trainees Cluster with 9 trainees Cluster with 12 trainees

Maximum time after hint Maximum time after hint Maximum time after hint

Wrong flags Hints taken Wrong flags Hints taken Wrong flags Hints taken
Scoretotal Time'played Scoretotal Time'played Scoretotal Time played
Almost 1/3 of the trainees scored
. low in the training and needed
Many achieved

more hints. But played significantly
shorter than the two outliers in
the vellow cluster.

good score fast
without struggle.

Fig. 3 The radar charts view. The main upper chart shows all the computed clusters combined, while the
small charts below enable a better examination of individual clusters
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clusters. The number of trainees in each cluster indicates groups of trainees using
the same strategy. It helps the analyst assess the cluster’s significance (typical vs.
exceptional behavior).

In the radar chart in Fig. 3, six clusters were selected, resulting in two small groups —
potential outliers. The yellow cluster reveals two trainees who played for a significantly
long time and took hints that were not very helpful. In contrast, the two trainees from the
violet cluster played relatively fast but submitted noticeably many wrong flags without
trying to take any hints. Nine trainees out of 34 performed very well. They achieved
good scores fast without struggle (the red cluster). Almost one-third of trainees scored
low in training and needed more hints. But they played significantly shorter than the
two outliers from the yellow cluster.

4.3 Elbow function

Both the scatter plot and radar chart views require the analyst to specify the number of
clusters. Selecting them ad-hoc iteratively and inspecting obtained results is not a very
efficient workflow. Therefore, we introduced a helping elbow function visualization
aiming to support this crucial analytical decision.

Finding an optimal k for k-means clustering is based on finding the sum of the
square distance between points in a cluster and the cluster centroid (Nainggolan et al.,
2019). Drawing these values in a line chart allows the analyst to identify an elbow
point where the curve is refracting. This point can be used as an initial number of
clusters for the exploratory analysis. In the example in Fig. 4, clusters of sizes 4
and 5 are emphasized as candidates for the initial exploration. The elbow graphs are
automatically computed for all scatter plots and radar chart views.

1604
1404

1204

Two possible alternatives for
a suitable number of clusters

1004

80

Sum of squared errors

60

40+

20

Number of clusters

Fig. 4 A helper line chart representing the elbow function. It serves for the selection of an initial number
of clusters for the analysis. In this case, 4 or 5 can be selected as suitable values

@ Springer



Education and Information Technologies

5 Evaluation

We conducted a qualitative user evaluation to receive feedback on the tool’s usage and
to verify that it provides the information outlined by the initial goals. Additionally, we
evaluated the tool’s usability and usefulness and gathered valuable remarks for further
improvements.

5.1 Participants

The evaluation includes nine target users (P1 —P9). Due to the necessity of background
domain knowledge, they need experience in designing and organizing cybersecurity
training sessions. All the participants were familiar with the concept and design process
of cybersecurity training in the Cyber Range and used the platform to conduct or design
various types of educational training. Details of participants are summarized in Table 2.

5.2 Procedure

The user study sessions were held individually, in person for seven participants, and
online (using MS Teams) for the remaining two. Each session lasted about 60 minutes
and had four parts.

In the introductory part, the experimenter explained the evaluation procedure, and
the participant consented and filled out the demography questionnaire. In the second,
the familiarization phase, the experimenter presented the tool, and the participant spent
2-3 minutes familiarizing themselves with it using a demonstration dataset. Next, the
respondent performed eight predefined analytical tasks (Table 3) that were formulated
to cover all the goals put on the tool.

Because of the relatively small size of the participants’ group, we decided to focus on
inputs beyond simple textual feedback. The tasks do not have strictly correct answers
and were purposefully formulated to require a more thorough justification. This ensures

Table 2 Demographic summary of the participants

1D Age Gender Position LE OE VE
P1 38 M Senior lecturer, Researcher 5 >20 4
P2 36 M Lecturer, Manager 5 >20 5
P3 29 M Senior lecturer, Researcher 5 >20 5
P4 30 F Seminar tutor, Researcher 4 <10 1
P5 30 M Analyst, Tutor 4 <20 4
Po6 41 M Forensics Analyst, Lecturer 5 >20 3
P7 34 M Data analyst, Lecturer 4 <10 3
P8 25 F Training designer, Lecturer 3 <10 3
P9 46 M Researcher, Seminar tutor 3 <2 5

LE — Lecturing experience, OE — Exercise organization experience, VE — Experience with analytical
visualizations
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Table 3 The tasks used for the evaluation

Task 1: In the “Wrong flags per time played’ view, identify the most appropriate
elbow method number in the helper elbow chart.

Task 2: In the "Wrong flags per time played’ view (for all levels), do you see any
suspicious trainees? Why/why not? If so, what is the trainee ID?

Task 3: In the *Wrong flags per time played’ view (for level 5), what could the results
imply regarding the level design?

Task 4: In the Time spent after using the hint’ view (for all levels), what does the
point distribution suggest? Does it imply a good training design or bad?

Task 5: In the 'Radar chart’ (for all levels), are there any clusters that represent
distinct strategies but share similar training success?

Task 6: In the "Radar chart’ (for all levels), are there any possible outliers?

Task 7: In the 'Radar chart’, how variable is overall success of the trainees across
the clusters?

Task 8: In the dataset of "Hacking Day Cyber Task Force Delta’ (all levels), deter-

mine which strategy (which cluster of trainees) was the most successful.

that, apart from the inputs of the answers, we can get more insight regarding the distinct
understanding of concepts such as “success” or “good training design”. Therefore, the
respondents were asked to comment on their actions and interpretation of the results.
The experimenter took notes and recorded the screen and audio with the participant’s
opinions and thoughts for further qualitative evaluation. In addition, the difficulty of
each task was also formally evaluated using an SEQ — Single Ease Question (Sauro &
Dumas, 2009) questionnaire to validate the process of mapping the abstract problem
onto a specific visual form.

Lastly, for a complete assessment of the tool’s usability, we combined SEQ with
the SUS — System Usability Scale (Sauro, 2011) metric. The SUS questionnaire helps
us rate the overall design of visual encoding and exploratory interactions.

5.3 Datasets

We used a total of three datasets, hereafter referred to as DS1 — DS3. They were
collected in past hands-on training sessions. All the datasets contain various events
that occur during training: submission of a wrong or correct flag, taking a hint, fin-
ishing a level, not interacting with the training portal, etc. To avoid information bias,
we used DS1 exclusively to introduce the visualizations and their capabilities to the
respondents, while DS2 and DS3 were used for the evaluation itself.

DS2, on which the majority of the tasks were performed, contains data collected
from 34 trainees of a training seminar with an attack-oriented scenario. The training
definition contains six training levels in which the participants attempt to scan a server
for vulnerabilities and exploit it. The session lasted seven days, during which 1741
events were collected.

The DS3 was used to determine the usability of our approach on a small dataset
with only seven trainees and 121 collected events. The exercise was a 90-minute-long
hacking competition with a similar scenario as the above but reduced to five levels.
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5.4 Usability results

We compared the respective answers from SUS questionnaires to assess the overall
usability of the proposed analytical tool. The obtained score of 75 lies in the interval
from 68 to 80.3, which fits the good rating category according to Bangor et al. (2009).

While SUS evaluation addresses the overall usability, SEQ scores reflect the diffi-
culty of solving individual tasks. The result summarized in Fig. 5 reveals that solving
all tasks was rather easy (more than half of respondents ranked them from neutral to
very easy). The lowest rank was assigned to Task 5 (an average score of 3.6), which
can be considered the most difficult. Other tasks except Task 4 achieved very high
average scores with values above five on the 7-point scale. Task 8, with an average
score of 6.0, was rated as the most simple when using our tool. Therefore, also the
SEQ results confirm an overall good usability of the tool for solving the tasks.

To access participants’ insight gained into individual tasks during the data explo-
ration, we observed how consistent their answers, comments, and recorded interactions
are regarding the original analytical goals G/—G3. In what follows, we summarize our
observations for individual goals. Task 1 is specific as it is related to all the goals. It
can be considered an introductory task making respondents aware that they can change
the desired number of clusters at any time.

Insight into the examination of gameplay strategies

The aim of the first analytical goal is to examine typical gameplay strategies. Our
objective was to confirm that the majority of participants would state similar outcomes
regarding the gameplay, the most often recurring behaviors, or the variability of the
playing strategies.

This goal was covered by the radar chart view, to which Tasks 5, 7, and 8 were
related. Radar charts in Fig. 3 illustrate the situation from the evaluation. However, it
must be remembered that the evaluation is dynamic, and a particular view depends on

SEQ answers Average
i : : ] >
2 : : ] 5
s : : ]
T : 2 I <
™ : I s

T6 1 2

5.8
7

o

57

T8 1 1 6.0

\

0% 25% 50% 75% 100%

m Very difficult = Difficult ~ Somewhat difficult  Neutral = Somewhat easy = Easy m Very easy

Fig. 5 SEQ score for individual tasks. The color scale rates each task from red — very difficult to blue —
very easy. Numbers inside the color bars show the number of corresponding ratings. The numbers on the
right-hand side of each task show average ratings (red = 1, blue = 7)
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selected parameters, especially the number of desired clusters and whether a specific
level or the entire training is examined.

To solve evaluation tasks, analysts must first clarify the meaning of “success” or
“failure” in an exercise. Our participants assessed the success of computed clusters
mainly by their score fotal and time played values, using other features as comple-
menting. This approach confirms our expectations.

Task 7 was directly proposed to get the participants’ remarks on the interpretation of
the success. In general, most participants identified two groups of trainees: a majority
that didn’t perform well and one smaller group that was much more successful. Seven
participants described the clusters as very variable, with different results. P7 identified
four groups: normal, good, bad, and unusual. P3 measured the success by the score
total axis length instead of comparing the clusters, thus ranking the success variability
as lower. The rest of the participants correctly compared the clusters in relative scales
between each other.

The ability to recognize and assess clusters with different degrees of training success
implies that the participants chose the right number of desired clusters for the analysis.
In Task 5, the goal was to identify distinct strategies leading to similar success or failure.
The evaluation revealed that participants primarily compared the total time played with
the number of hints taken, as these two features evinced significant differences among
clusters with similar success.

Task 5 was rated as the most difficult (SEQ score 3.6). However, it was the first to
work with the radar chart (before Task 7) in the evaluation process. All the succeeding
tasks related to the radar chart were rated as easier (with SEQ scores ranging from
5.8 to 6.0). And because they were conducted with different datasets, it refutes the
reason for the sudden rise of rating would be getting familiar with the data and thus
subjectively seeing the tasks as easier. It rather suggests that users find it easier to
comprehend encoded information after getting more familiar with the overall concept
of the radar charts.

Task 8 was rather straightforward as all the participants pinpointed the same set of
characteristics and selected the same groups of trainees. The participants measured
success as a correlation between score fotal and time played. Some participants ignored
the high number of wrong flags as a factor that should lower the success rate.

Overall, the participants were able to find the connections between the features in
individual clusters that are related to distinct strategies and, moreover, to identify and
name specific significant gameplay strategies. One of the often mentioned strategies
was that some trainees were omitting the hints and were trying to pass the level on
their own.

Insight into flaws in training design

The second goal focuses on identifying flaws in training design. It should help deter-
mine if there are any points where it is too hard for the trainees to solve the puzzle
or, in contrast, some trainees get too good results too easily. This goal was covered
by Tasks 3 and 4. Both of them relate to the scatter plot views, and their average SEQ
score achieved 5.1 (Task 3) and 4.6 (Task 4).
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Task 3 focuses on the relationship between the number of wrong flags submitted
in a certain game level and the time of level playing (i.e., the time played feature).
The answer to the question depended on how people perceive the quality of a training
design with respect to the effort. In general, a *good level design” was mostly defined
by participants as one in which the dots are adjacent to the y-axis (low number of wrong
flags) and the level time is not too high (not too apparent in the current visualization —a
time estimate could help according to one of the participants). The majority identified
level 5 (depicted in Fig. 6) as quite easy as the significant amount of points lies in the
left part of the chart, and it was considered a good sign for them (straightforward and
balanced assignment).

The goal of Task 4 was to identify how the participants dealt with training design
specifics related to hints. Data from the evaluation are depicted in Fig. 2 — right view.
Clusters are computed for the entire game (averaged values across all levels), and they
evince significant distribution close to both axes.

The interpretation of this distribution by respondents met our expectations. All the
participants agreed on an equivalent response. They decided the design was rather
good. They agreed that good design (related to hint usage) is denoted by a high
concentration of dots on the bottom side (close to the x-axis), which suggests that
once displaying the hint, there were not many successive issues (i.e., the hint was
helpful). They noticed that after using a hint, the majority of trainees solved the level
without too many wrong answers. Five participants would, however, analyze the hints
further because some seem to be less useful for some trainees.

10]
094

0.8+

Time played

0.0 01 0.2 03 04 0'5 016 OI? CXB 09 10
Wrong flags submitted

Fig.6 Scatter plot with data for level 5 in evaluation Task 3
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Identification of outliers

The third goal reflects the need to identify outliers among trainees. Both visualizations,
i.e., the scatter plot and radar chart, have the potential to show them.

Task 2 focuses on the scatter plot view. More specifically, on spotting any suspicious
trainees in terms of the number of submitted wrong flags. The majority of participants
(7) noticed a trainee (the violet outlier on the left chart in Fig. 2) who was suspicious
due to the very high number of flags per relatively short time. One participant did
not notice the suspicious trainee at first because the chart boundaries were not clearly
visible. Another trainee was reported for submitting a large number of flags and playing
for a relatively short time (compared to the rest).

The radar-chart outlier discovery was evaluated via Task 6. Except for one partic-
ipant, everyone was looking for small clusters (i.e., with a small number of trainees)
that moreover had outstanding data. The cluster with a single trainee was the most
frequently selected. Some also considered one with two trainees. However, a single
participant (P4) who selected the same cluster as the rest additionally selected also a
large cluster with 12 trainees. The stated reason was that it showed unusual behavior
(high scores, low number of hints).

5.5 Scalability results

To find the limits of the selected algorithm in carrying out the clustering problem from
the computational point of view, we measured and analyzed data volume bounds.
The analysis was performed for the backend application (the Elasticsearch stack and
Java application), which employs all the computationally intensive tasks. The tests
were executed on a computer with the following specification: 32 GM RAM, Intel(R)
Core(TM) 15-9600K processor, 512GB SSD M.2 disk, Windows 10 OS.

Performance analysis

The performance was evaluated by measuring the speed of the application (response
time of each API request) and the utilization of resources, i.e., memory and CPU
usage. Two tools were used for the testing to obtain these metrics. The first is the
Apache JMeter, which measured the latency and overall sample time across different
threads while several requests were executed. Since a single request would not provide
arepresentative load, it puts the application under considerable stress resulting in more
conclusive data.

The second tool, VisualVM, monitors Java applications while they are running on
a Java Virtual Machine. Specifically, it can provide information about CPU usage as
well as used heap or metaspace.

The tests for both tools consisted of batches of REST calls across different threads.
While the tests in JMeter were running, VisualVM was used for monitoring. The first
batch of tests was run on 50 threads executed in groups of five, totaling 300 calls in all
tests. The chosen dataset for the test was a training definition with about 2300 records.

Another analysis run was performed with unrealistic experimental datasets to test
the application with a higher amount of users. Specifically, the first test used a dataset
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of 100 users and 2652 records. Another experimental test was run with 1000 users and
circa 10000 records.

Detailed results are available in Mlynarik (2022). In summary, most calls were
finished in less than 200 milliseconds, with only a few exceptions. In the largest
dataset, the results show an average value of 500 ms for cluster computation and 3
to 8 seconds for the sum of squared errors, which is used for optimal cluster number
retrieval. It is expected that the calls for the sum of squared errors (which then enable
the selection of the appropriate number of clusters) are more complex, and thus the
response time is significantly longer. Anyway, measured times are suitable for the
interactive exploration of data captured in real cybersecurity training sessions.

Lower bound analysis

The computation of relevant clusters requires a minimum amount of data. The estima-
tions for a lower bound on the amount of data can be computed according to Formann
(1984). The suggested minimum sample size should equal 2 - d, where d denotes the
number of dimensions (features) used for the analysis. Preferably, the number should
be higher, at 5 - (2 - d). This implies a minimum of 4 trainees for the scatter plot
and 32 trainees for the radar chart. The optimum would then be 20 and 160 trainees,
respectively.

Our practical experience shows that training events have around 20 participants
per single training session, which satisfies the preferred amount for the scatter plots.
On the other hand, the same game is often organized multiple times. The usage of
radar charts is, therefore, restricted to bigger training events or to combine data from
multiple sessions.

In another study regarding the sample sizes for clustering analysis (Dolnicar et al.,
2014), the authors examine different data types. They do not bring a universal conclu-
sion since specific knowledge of data structure is always necessary. To sum up their
findings, the minimum requirement for sample size varies vastly across different data
sets. However, they provide a recommendation of 70 - d of data points for segmen-
tation studies. Currently, we do not have enough data to fulfill this requirement, but
gradually, as more data from the training definitions are collected, the analysis will
become more accurate.

6 Conclusions
The presented research aims to gain insight into finished hands-on exercises by explor-
ing automatically collected, processed, and visualized data. Without this automation

topped off with well-elaborated interactive visual techniques, gaining insight is labo-
rious, time-consuming, or even impossible.

6.1 Fulfillment of objectives

This paper shows how the clustering methods mediated by appropriate complemen-
tary visualizations can help tutors and training designers analyze typical behavioral
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data collected in cyber ranges. Proposed analytical goals G/-G3 were formulated by
studying the available data and consulting requirements with domain experts. The
ability to examine analytical goals and infer hypotheses about the training content and
the behavior of trainees was evaluated with the following results.

e Examine typical gameplay strategies (G1):. The participants were aimed at a more
thorough recognition and assessment of the revealed clusters, and they identified
similar types of trainee groups. The results show variability, but overall, the partici-
pants tended to pinpoint similar characteristics and groups of trainees. The average
difficulty of the three related tasks, measured by the SEQ, ranged from 3.6 to 6.0
(from somewhat difficult to easy).

o Identify flaws in training design (G2): We covered the requirement in the scatter
plot visualization with two initial views on the relationships between two sets
of features. In two relevant tasks of the evaluation, the participants agreed on
equivalent responses and defined a good training design by similar measures. On
average, they rated the tasks as somewhat easy.

o Identify outliers (G3): The need to identify exceptional behavior among the trainees
was supported by both visualization views. The evaluation was covered by two
tasks, one for each visualization type. The radar chart proved more convenient for
finding outliers with many distinct characteristics, while the scatter plot pinpoints
only a small subset of specific behavior. The SEQ results rate the tasks as somewhat
easy and easy.

6.2 Educational implications

The knowledge built gradually using the visual analysis tool can have significant
implications for tutors who organize and supervise training sessions, training designers
who prepare the content, and other stakeholders involved in cybersecurity education.
In particular, the following types of learning insight can be gained:

o Interest: Using hints during the training can suggest the level of interest of trainees
in solving tasks by themselves or, on the contrary, reveal the loss of motivation
to make any effort (they take hints effortlessly instead). The goal of any content
designer or training tutor should be to maintain high interest during the whole
training because only then the impact on trainees can be expected.

e Prerequisite knowledge: Every exercise is designed for a certain level of assumed
knowledge or skills. The training should be neither too easy nor too difficult. The
proposed clustering-based analysis can show how much the assumptions corre-
spond to reality or how much the input knowledge (and then the difficulty) was
variable for a given study group. Observing these aspects allows tutors and content
designers to take action, e.g., by introducing a theoretical lecture before the next
hands-on training.

e Technical or conceptual flaws: Any technical (e.g., a long response time, authenti-
cation problems, or non-functionality of copy-and-past) or conceptual (e.g., typos
in the assignment, confusing tasks or hints) problems can cause frustration fol-
lowed by loss of motivation. Although the clustering-based visualizations cannot
show the appearance of such issues directly, they can help to spot these situations
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from the changed behavior of trainees, allowing tutors and designers to actively
search for the flaws.

o Training parameters: Training difficulty can be managed by fine-tuning training
parameters, especially allocated time and weakening or hardening penalties. Post-
training review of training parameters can be performed by studying behavioral
clusters.

6.3 Limitations

The number of participants involved in the evaluation was limited due to their need
for experience designing and organizing practical cybersecurity exercises. However,
this paper aims to provide a methodology for the application of clustering methods
into process-oriented cybersecurity training sessions so that the behavior of trainees
hidden in the raw event logs can be efficiently analyzed. In this sense, this paper should
sufficiently demonstrate the analytical principles, and the evaluation brings promising
results for its usability.

Another limitation relates to the performance of the initial clustering algorithm. It
is important to note that in a typical setting of hands-on cybersecurity training, data of
tens of users at most are processed at once. In such scenarios, the tool’s performance
suffices. However, since we evaluated its usefulness and usability with positive results,
we plan to improve the tool’s scalability for larger datasets in the following iterations
to enable analysis over more extensive data.

The techniques of cluster analysis in education are still an emerging discipline. Our
work aims at a small portion of the whole area, and there is still a need to find ways
to provide new insight into the support of the training organizers and designers.

6.4 Future work

For future improvements, there are techniques that could further enhance the clustering
output. Specifically, initializing the clusters using heuristics is an interesting factor in
reducing the produced errors. In Frinti and Sieranoja (2019), the authors suggest
using simple heuristics, which can improve the error from 15% to 6% on average.
This difference can lead to better and more consistent results in clusters with several
features and varied data. Optionally, we also plan to explore the viability of other
clustering algorithms, such as density-based, which could provide interesting results.
The visualization integrated into the training platform will also provide an option to
show actual data values instead of the normalized variant since the evaluation reveals
that they present more specific outcomes for further analysis.

As for the interaction with the tool, we plan to provide more customization and
interaction for the visualizations. For example, by introducing an extended set of
available features for the charts. Other possible features include the number of shell
commands used to solve a task, inactivity indicators, the speed of submitting wrong
flags, or taking a hint at the beginning of the level.
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Our solution proved usability for the well-structured cybersecurity Capture the Flag
games. Extending the same principles and exploratory visualizations to other types of
hands-on exercises is an open problem and a subject of our future research.
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