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Abstract 

Background  Biological aging reflects a decline in the functions and integrity of the human body that is closely 
related to chronological aging. A variety of biomarkers have been found to predict biological age. Biological age 
higher than chronological age (biological age acceleration) indicates an accelerated state of biological aging 
and a higher risk of premature morbidity and mortality. This study investigated how socioeconomic disadvantages 
influence biological aging.

Methods  The data from the National Health and Nutrition Examination Survey (NHANES) IV, including 10 nation-
ally representative cross-sectional surveys between 1999-2018, were utilized. The analytic sample consisted of N = 
48,348 individuals (20-84 years). We used a total of 11 biomarkers for estimating the biological age. Our main out-
come was biological age acceleration, indexed by PhenoAge acceleration (PAA) and Klemera-Doubal biological age 
acceleration (KDM-A). Poverty was measured as a ratio of family income to the poverty thresholds defined by the U.S. 
Census Bureau, adjusted annually for inflation and family size (5 categories). The PAA and KDM-A were regressed 
on poverty levels, age, their interaction, education, sex, race, and a data collection wave. Sample weights were used 
to make the estimates representative of the U.S. adult population.

Results  The results showed that higher poverty was associated with accelerated biological aging (PAA: unstandard-
ized coefficient B = 1.38 p <.001, KDM: B = 0.96, p = .026 when comparing the highest and the lowest poverty level 
categories), above and beyond other covariates. The association between PAA and KDM-A and age was U-shaped. 
Importantly, there was an interaction between poverty levels and age (p <.001), as the effect of poverty was most 
pronounced in middle-aged categories while it was modest in younger and elderly groups.

Conclusion  In a nationally representative US adult population, we found that higher poverty was positively associ-
ated with the acceleration of biological age, particularly among middle-aged persons.
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Introduction
Biological aging reflects a decline in the functions and 
integrity of the human body and an increased vulnerabil-
ity to disease [1]. Among individuals, the decline occurs 
with varying dynamics; therefore, people with the same 
chronological age may exhibit different states of their 
body functions [2]. Biological age higher than chrono-
logical age (biological age acceleration) indicates an 
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accelerated state of biological aging [3] and a higher risk 
of premature morbidity and mortality [4].

Biological age has been employed as a convenient index 
for indicating the state of functional abilities. Although 
numerous studies assessed biological aging, there are 
no gold standard assays for individual biological age [5]. 
Numerous biological clocks have been proposed in pre-
vious studies. The most promising clocks were derived 
from DNA methylation and clinical biomarkers. DNA 
methylation-based markers of aging, also known as epi-
genetic clocks, represent chemical modifications of the 
genome that occur over the life course [6, 7]. Despite the 
fact that epigenetic clocks have been statistically associ-
ated with many age-related diseases and conditions (e.g., 
atherosclerosis, cognitive decline, menopause onset, etc.) 
[8, 9], such epigenetic analyses are often costly and tech-
nically challenging, making it difficult to conduct large-
scale studies.

To address these limitations, analytical concepts based 
on clinical biomarkers that are more readily available in 
population studies have been developed [3, 4]. These bio-
markers of aging reflect inter-individual variations in the 
timing of disease onset and functional decline over the 
lifespan [7]. To predict biological aging by clinical bio-
markers, previous studies considered several statistical 
approaches, including multiple linear regression (MLR), 
principal component analysis (PCA), Klemera and Dou-
bal’s method (KDM), as well as artificial intelligence tech-
niques [10, 11]. For instance, Kwon and Belsky recently 
presented a novel R package developed to implement 
three methods to quantify biological aging: KDM biologi-
cal age, PhenoAge and homeostatic dysregulation. The 
BioAge package enables users to select which biomarkers 
to include, then trains the algorithm using NHANES III 
data, which is then projected to the NHANES IV data [3].

The dynamic of aging trajectories is affected by biologi-
cal factors such as sex hormone levels or genetic char-
acteristics but, to a large extent, by modifiable health 
behaviors, external exposures, and socioeconomic posi-
tion [4, 12]. Previous studies have suggested that individ-
uals from socioeconomically disadvantaged backgrounds 
may experience accelerated biological aging [13] due to 
complex economic and social conditions that directly 
and indirectly impact health outcomes [14, 15]. Social 
disadvantage has been associated with increased physi-
ological stress [16], engagement in unhealthy behaviors 
(e.g., inappropriate nutrition) [17], and a higher exposure 
to environmental risks. These exposures, accumulat-
ing across the life course, can directly influence a subse-
quent chain of biological processes relevant to aging [18]. 
Therefore, the effect of socioeconomic disadvantage on 
aging may vary throughout the lifespan. The results of 
previous studies reporting effect modification between 

socioeconomic status and age are mixed. Some studies 
found  the effect of socioeconomic disadvantage more 
pronounced in older adults, while other studies did not 
find any age interaction [19]. Accordingly, to address 
this gap in knowledge and the need to target health and 
social policies to reduce health inequalities in older ages, 
this study aims to investigate how socioeconomic disad-
vantages influence biological aging in different stages of 
adulthood.

Methods
Study population
The current study used data from the National Health and 
Nutrition Examination Survey (NHANES) IV, an ongoing 
series of nationally representative cross-sectional sur-
veys, comprising biennial surveys from 1999-2018 (10 
surveys in total). Details of recruitment procedures and 
study design are available from the Centers for Disease 
Control and Prevention (Centers for Disease Control 
and Prevention, 2018). NHANES is a publicly available 
dataset  (https://​www.​cdc.​gov/​nchs/​nhanes) approved by 
the National Center for Health Statistics (NCHS) Ethics 
Review Board. All participants included in this study pro-
vided written informed consent.

The sample included both interviews and physical 
examinations, and data were collected from a variety of 
sources, including self-reported questionnaires, physical 
measurements, and laboratory tests. The baseline sample 
included 101,316 individuals. As the BioAge tool was cal-
ibrated on NHANES III adult individuals (age 20+), we 
limited the age of the sample to 20-84 years (see Methods 
for explanation), resulting in the sample of N = 54,279 
individuals, from which N = 48,348 had available bio-
marker data, making this the final analytic sample. Sam-
ple weights from each survey were combined to provide 
nationally representative estimates for the overall sample.

Measures
Biological aging mesures
The measures of biological aging used in this study were 
PhenoAge [7] and the Klemera-Doubal’s method [20]. 
These were computed using the “BioAge” R package 
developed by Kwon and Belsky [3, 21]. From these two 
measures, we derived two indices of biological age accel-
eration, which reflects biological age higher than individ-
uals’ chronological age.

PhenoAge Acceleration (PAA)  PhenoAge is one of the 
most popular methods for estimating biological age. The 
PhenoAge measure corresponds to the chronological 
age at which the mortality risk would be approximately 
normal in a reference population. It was first described 
by Levine et  al. by regressing the hazard of age-related 
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specific mortality (including mortality to heart, malig-
nant neoplasms, chronic lower respiratory disease, cer-
ebrovascular disease, diabetes mellitus, Alzheimer´s 
disease, etc.) on a total of 42 clinical biomarkers and 
chronological age in NHANES III data. Cross-validation 
was further employed to select the final 9 biomarkers for 
the PhenoAge predictor. These 9 parameters and chrono-
logical age were then included in a parametric propor-
tional hazards model to estimate the 10-year mortal-
ity scores that were finally converted into units of years 
(please see Levine et  al., 2018, for  a full description of 
the method) [7]. Kwon and Belsky provided an updated 
version of the PhenoAge involving 12 biomarkers [3]. 
We based our computation on this updated version, but 
we omitted C-reactive protein (CRP) as a biomarker, as 
this was not assessed in the 2011-2012 and 2013-2014 
NHANES surveys, and used the following 11 biomarkers: 
albumin, alkaline phosphatase, blood urea nitrogen, cre-
atinine, glycated hemoglobin, mean cell volume, percent-
age of lymphocytes, systolic blood pressure, total choles-
terol, uric acid, and white blood cell count.

PhenoAge higher than chronological age indicates 
an advanced state of biological aging = acceleration, 
while PhenoAge lower than chronological age indicates 
delayed biological aging. Hence, PhenoAge Accelera-
tion was calculated as the difference between PhenoAge 
and chronological age, where higher numbers indicated 
a faster biological aging.

KDM Acceleration (KDM‑A)  For computing biologi-
cal age, the Klemera-Doubal’s method (KDM) reflects 
an individual’s biological age at which their physiology 
would be considered normal (with regard to the reference 
sample). The KDM algorithm uses a series of regressions 
of chronological age regressed on selected biomarkers in 
a reference population, separately for males and females 
(please see Klemera and Doubal, 2006, for a full descrip-
tion of the method) [20]. KDM was found to be one of 
the best-performing methods in predicting mortality [21, 
22]. Kwon and Belsky also provided an updated version 
of the KDM, with the same 12 biomarkers as for Pheno-
Age, and we used 11 of them.

KDM higher than chronological age reflects advanced 
aging while KDM lower than chronological age reflects 
delayed aging. Just like PhenoAge, KDM-A was calcu-
lated as the difference between KDM and chronological 
age, where higher numbers indicated faster biological 
aging.

Sex  Measured as male (reference group) or female.

Age  Coded in full years, ranging from 20 to 85 years, 
with individuals older than 85 years coded as 85 in the 
NHANES data. Because individuals older than 85 years 
were grouped with 85-year-old individuals, it is unknown 
how old these individuals were, which might bias the esti-
mation of their biological age. For this reason, we decided 
to focus on individuals aged 20-84 years.

Education  Education level of adults (20+) coded as the 
highest grade of school completed, with 1 = Less than 
high school, 2 = High school grad/GED or equivalent, 3 
= Some college or AA degree, 4 = College graduate or 
above.

Ethnicity  Measured using four categories that were 
available across all surveys: White, Black, Hispanic, and 
Other. This was recoded into three dummy codes with 
White as the reference group.

Poverty index  Measured as a total (annual) income for 
individuals and for other members of the family, divided 
by the U.S. Census Bureau poverty thresholds, adjusted 
for family size, and updated annually for inflation. In 
2012, for instance, the average poverty thresholds were 
$23,492 for a family of 4 and $27,827 for a family of 5 
[23]. The poverty index was assessed on a continuous 
scale that spanned from 1 to 5, with values extending to 
two decimal places. We transformed the poverty index 
into five distinct categories using the following criteria: 
0-1 was assigned a value of 1; 1.01-2 was assigned a value 
of 2; 2.01-3 was assigned a value of 3; 3.01-4 was assigned 
a value of 4;  and 4.01-5 was assigned a value of 5. Sub-
sequently, we inverted these categories, making 1 repre-
sent the lowest level of poverty and 5 reflect the highest 
degree of poverty.

Wave  To control for possible cohort effect, the wave of 
data collection (coded 1-10) was used as a covariate.

Data analysis
Our two outcome variables were PhenoAge acceleration 
(PAA) and KDM acceleration (KDM-A). As mentioned 
above, the PhenoAge and KDM indices were computed 
using the BioAge package. Our selected 11 biomarkers 
were used to train the algorithms in the NHANES III 
data, and the resulting estimates were then projected to 
the NHANES IV data. The indices of acceleration were 
computed by regressing participants’ estimated Pheno-
Age and KDM on their chronological age and export-
ing the residuals [24, 25]. The association between PAA 
or KDM-A and age was tested in a linear model with 
age polynomials first to see the form of the association 
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(Model 1a for PAA and Model 1b for KDM-A). Next, 
the models were extended to include all the covariates 
(sex, age, ethnicity, education, wave of data collection, 
and poverty index; Model 2a for PAA and Model 2b for 
KDM-A). According to our research question, we also 
estimated interaction terms between the poverty index 
and age terms. R package survey was used for analyses 
with complex survey data design (stratified cluster-sam-
ple data with survey weights), providing nationally repre-
sentative estimates. All data analyses were computed in 
R 4.2.1. As only a few variables (poverty ratio, PAA) had 
missing values with less than 10% missing, all the analy-
ses were done with complete data.

Results
Table  1 presents the descriptive statistics of the sample 
with weighted percentages. There were slightly more 
females in the sample (51.71%). The mean weighted age 
was 46.88 years, with 3.71% of participants older than 
80 years. There were 68.53% White participants, 10.66% 
Black participants, 13.91% Hispanic participants, and 
6.90% participants with different reported race/ethnic-
ity. About 17.17% of participants reported less than 
high school as their highest attained education, 23.96% 
of participants reported completed high school, 30.95% 

reported attending college (without a degree), and 
27.92% participants indicated college degree as their 
highest attained education.

Regarding the poverty index, 36.31% of participants 
were in the lowest poverty group, while 14.16% were in 
the highest poverty group. The descriptives of the bio-
marker levels are reported in Table 2.

First, we regressed the two measures of biological 
aging, PAA and KDM-A, on linear and quadratic age 
terms (Model 1a and Model 1b). All reported estimates 
are unstandardized regression coefficients. The results 
showed a significant negative linear effect for both (PAA: 
B = -0.02, p <.001; KDM-A: B = -0.05, p < .001) with a 
positive quadratic term (PAA: B = .001, p < .001; KDM-
A: B = .003, p < .001), showing that among younger 
NHANES participants, each additional year is actually 
associated with lower PAA or KDM-A. For both meas-
ures, this drop reached its lowest point at around age 50, 
and then the association became positive, the total asso-
ciation across time resembling a U shape.

In the next step, all covariates were added to these lin-
ear models. The results from the full models (Model 2a 
and Model 2b) are shown in Table 3. They indicated that, 
compared to males, females had an estimated PAA that 
was lower than for males (B = -2.94, p < .001), yet their 
KDM-A was higher (B = 0.74, p < .001). Black individuals 
showed higher PAA compared to White respondents (B 
= 0.63, p < .001), and a significantly higher KDM-A (B = 
2.66, p < .001). On the other hand, Hispanic participants 
(B = -0.80, p < .001) had lower estimated PAA compared 
to White participants (but not KDM-A). Also, individu-
als of other ethnicities showed lower PAA (B = -0.55, p 
< .001) and KDM-A (B = -0.75, p =.048) compared to 
White participants. Higher levels of education were asso-
ciated with lower estimated biological age for both meas-
ures, but this was only driven by college education vs less 

Table 1  Descriptive statistics of the study sample

n weighted %

Sex Male 23349 48.29

Female 24999 51.71

Age category 20-29 8446 18.54

30-39 8284 18.87

40-49 8257 19.94

50-59 7351 18.11

60-69 7964 12.85

70-79 5229 7.99

80-84 2817 3.71

Race/ethnicity White 21410 68.53

Black 9793 10.66

Hispanic 12670 13.91

Other 4475 6.90

Education Less than high school 13185 17.17

High school grad/GED or equiva-
lent

11278 23.96

Some college or AA degree 13846 30.95

College graduate or above 10521 27.92

Poverty index Lowest poverty (1) 11432 36.31

2 5040 13.52

3 6811 15.50

4 11721 20.51

Highest poverty (5) 9153 14.16

Table 2  Descriptive statistics of biomarkers used in the study

Unit M SD min max

Albumin g/dL 4.23 0.36 2.40 5.70

Alkaline phosphatase IU/L 71.35 23.04 7.00 210.00

Total cholesterol mg/dL 195.62 41.61 59.00 406.00

Creatinine mg/dL 0.62 0.13 0.10 1.51

Glycated hemoglobine 
(Hba1c)

% 5.66 0.88 2.00 11.30

Systolic blood pressure mmHg 124.52 19.15 64.67 230.00

Blood urea nitrogen mg/dL 13.45 5.31 1.00 45.00

Uric acid mg/dL 5.41 1.45 0.40 12.50

Lymphocyte % 30.30 8.56 2.70 73.80

Mean cell volume fL 89.40 5.74 58.20 118.10

White blood cell count 1000 cells/uL 7.25 2.12 1.40 19.80
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than high school (PAA B = -1.20, p < .001, KDM-A B = 
-2.43, p < .001), as the other levels of education were not 
significantly different when compared to the reference 
group.

The reference group for poverty status was the group 
with the lowest poverty (group 1). No effect on PAA or 
KDM-A was found for group 2; however, there was a sig-
nificant positive effect for groups 3, 4, and 5 when com-
pared to group 1, suggesting biological age acceleration 
was more pronounced in higher levels of poverty (B for 
the highest poverty group = 1.38 when compared to the 
lowest poverty group, p < .001 for PAA, B = 0.96, p = 
.026 for KDM-A). The linear association of age and PAA 
was preserved in the full model for PAA (B = -0.04, p < 
.001), as well as KDM-A (B = -0.09, p < .001). The quad-
ratic association of age and PAA and KDM-A, observed 
in models without covariates, remained positive and sta-
tistically significant in the full model.

The relationship between poverty status and PAA was 
modified by age. While each unit increase in the poverty 
category corresponded to a 0.01 unit increase in PAA per 
one-year increase in age (p < .001), the difference among 

poverty index groups diminished at later age, as indi-
cated by a significant negative interaction with quadratic 
age term. The same finding was observed for KDM-A, 
when each unit increase in the poverty categories corre-
sponded to a 0.02 unit increase in KDM-A per one-year 
increase in age (p = < .001, and the interaction with age2 
was also statistically significant (B < -0.001, p = .017).

Taken together, with increasing age, individuals with 
high income showed a steeper drop in PAA and KDM-A 
compared to individuals with lower income. Figures  1 
and  2 show the predicted values of PAA and KDM-A by 
poverty index groups across age. Specifically, for PAA, 
the differences among poverty groups became most pro-
nounced around the age of 50; afterward, the differences 
in PAA among poverty index groups became progres-
sively smaller.

Discussion
Estimating biological aging has emerged as a novel 
approach for understanding how socioeconomic and 
environmental disadvantages shape health over the life 
course. Our results showed that living in poverty was 

Table 3  Results from linear models with all covariates included

Model 2a
PhenoAge Acceleration

Model 2b
KDM Acceleration

B 95% CI p B 95% CI p

Sex

  Men (ref ) (ref )

  Women -2.94 [-3.04, -2.84] <.001 0.74 [0.39, 1.09] <.001

Ethnicity/Race

  White (ref ) (ref )

  Black 0.63 [0.47, 0.79] <.001 2.66 [2.18, 3.14] <.001

  Hispanic -0.80 [-0.99, -0.60] <.001 -0.41 [-0.90, 0.08] .098

  Other -0.55 [-0.82, -0.29] <.001 -0.75 [-1.49, -0.01] .048

Education

  Less than high school (ref ) (ref )

  High school grad/GED or equivalent 0.13 [-0.02, 0.28] .087 0.45 [-0.06, 0.96] .082

  Some college or AA degree -0.09 [-0.25, 0.07] .290 0.09 [-0.43, 0.62] .721

  College graduate or above -1.20 [-1.39, -1.00] <.001 -2.43 [-3.00, -1.87] <.001

Wave 0.04 [0.00, 0.07] .045 0.04 [-0.06, 0.14] .421

Poverty index

  Lowest poverty (1) (ref ) (ref )

  2 0.17 [-0.03, 0.36] .094 -0.14 [-0.70, 0.42] .621

  3 0.57 [0.38, 0.76] <.001 0.67 [0.17, 1.17] .009

  4 0.94 [0.72, 1.15] <.001 0.91 [0.25, 1.58] .007

  Highest poverty (5) 1.38 [1.11, 1.64] <.001 0.96 [0.12, 1.81] .026

Age -0.04 [-0.05, -0.03] <.001 -0.09 [-0.11, -0.06] <.001

Age2 0.002 [0.002, 0.002] <.001 0.004 [0.002, 0.005] <.001

Poverty*age 0.01 [0.005, 0.010] <.001 0.02 [0.01, 0.02] <.001

Poverty*age2 <-0.001 [<-0.001, <-0.001] <.001 <-0.001 [<-0.001, <-0.001] .017
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Fig. 1  Predicted values of PhenoAge acceleration (PAA) for poverty groups across age. Note: Model controlled for sex, age, ethnicity, education, 
wave of data collection, and poverty index

Fig. 2  Predicted values of Klemera-Doubal’ Biological Age acceleration (KDM-A) for poverty groups across age. Note: Model controlled for sex, age, 
ethnicity, education, wave of data collection, and poverty index
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associated with accelerated biological aging; those in 
more advantageous economic positions experienced 
a  more noticeable delay in aging, particularly in middle 
age, while the poverty-stricken groups showed weaker 
signs of this phenomenon. In the poorest group, the delay 
in biological aging is barely noticeable. Likewise, higher 
levels of education were linked with lower biological age, 
although a  significant association was observed only in 
the highest educational group.

These findings extend previous observations of Crim-
mins et al. conducted on NHANES adults, using biologi-
cal risk estimated from 9 biomarkers, including blood 
pressure, BMI, and blood biomarkers. The study sug-
gested that biological risk increased more rapidly in the 
highest poverty group [26]. Similarly, two recent studies 
conducted using DNA methylation biomarkers reported 
significantly accelerated biological aging in adults with 
the lowest household incomes [27, 28].

Our results also suggested that social disparities in bio-
logical aging are substantially modified by age. In younger 
age groups, the socioeconomic disparities were mod-
est but grew more pronounced with age, reaching their 
highest point around 50. The differences began to dimin-
ish in older age groups, becoming almost negligible in 
the oldest age groups. We should note that survival bias 
may be a possible explanation of no difference in older 
ages, particularly with regard to the association between 
poverty and life expectancy. We should also point out 
that the clinical biomarkers involve indicators related to 
chronic diseases that are commonly associated with older 
age. Therefore, small differences in younger ages may be 
explained by the generally low prevalence of risky levels 
of biomarkers among rich as well as poor young people. 
Again, our findings are consistent with the study of Crim-
mins et al., which reported the highest manifestation of 
socioeconomic disparities when individuals were in their 
50s and 60s [26].

Social determinants operate at every stage of life, and 
no single factor is prone to drive the association between 
low SES and accelerated aging. Rather, adversity experi-
enced through disadvantaged life conditions will likely 
have cumulative effects over the lifespan, affecting health 
in older age [29]. For instance, the impact of unhealthy 
behaviors, such as smoking, drinking, drug use, poor 
nutrition, and lack of physical activity may not show 
immediately, but such effects are chained and accumu-
lated. For example, those who smoked, had unhealthy 
diets, and were physically inactive in their teens were 
more likely to face health issues in their 40s and 50s [30]. 
Similarly, low SES has been associated with living in 
more polluted areas that may, in the long-term, promote 
a  faster decline of functional abilities of the organism 
(e.g., lung functions, cognitive functions, etc.) [31, 32]. 

Finally, low wealth has been related to greater chronic life 
stress that may influence mental well-being [33].

Strength and limitations
This study involved a large population-representative 
sample of U.S. adults enrolled across two decades (1999-
2018). We measured biological age using two measures 
that are well-validated as predictors of age-related con-
ditions and diseases based on previous studies [34, 35]. 
PAA and KDM-A were quantified using readily available 
clinical biomarkers. We selected the poverty income ratio 
as a more precise indicator of contemporary socioeco-
nomic resources than measures such as education and 
occupational status. The ratio better addresses the eco-
nomic stability of the individuals, family income, and 
spatial and temporal differences in financial needs [36].

Several limitations need to be acknowledged. First, 
our analyses were conducted using cross-sectional data 
without repeated measurements of biological aging bio-
markers and predictors. Thus, we were unable to observe 
temporal relationships between early-life exposures to 
socioeconomic disadvantages and biological aging in late 
adulthood. Also, it limits our ability to study important 
mediation effects of unhealthy behaviors (e.g., smok-
ing, alcohol consumption, unhealthy diet, etc.) that may 
occur as a consequence of living in a socioeconomically 
disadvantaged environment, and that may subsequently 
accelerate biological aging later in life. Second, we should 
note that our analyses depended on PAA and KDM-A 
that were estimated based on blood biomarkers only and 
did not include several essential biomarkers of functional 
abilities, including cognitive performance, pulmonary 
functions, or physical fitness, which are suitable predic-
tors of healthy aging [37]. In addition, epigenetic clock 
information, an increasingly popular approach to esti-
mate biological aging, was not available in the data. DNA 
methylation-based markers have shown impressive accu-
racy with chronological age [38] and have been associ-
ated with many age-related diseases and conditions [8]. 
Third, we had no information about the health status of 
the participants, which might potentially affect the rep-
resentativeness of the study sample, as individuals with 
poor self-reported health are less likely to participate in 
the study. However, we partially addressed this issue by 
utilizing sample weights in all data analyses.

Conclusion
The world population is experiencing an unprecedented 
increase in the percentage of older people, and biomark-
ers of aging may empower the evaluation of interventions 
for promoting healthier aging [39]. Further, it is essen-
tial to determine whether the additional years of life will 
be spent mainly in good or poor health. Evaluating the 



Page 8 of 9Dalecka et al. BMC Public Health          (2024) 24:458 

biological age over the lifespan is a simple but convenient 
tool for indicating the state of functional abilities. Our 
study suggests that economic disadvantage is associated 
with accelerated aging. Additionally, we identified an age 
window of the highest manifestation of social disparities 
in health. Thus, our results highlight the importance of a 
life course perspective in research as well as the need to 
tackle the burden of health inequalities to enable healthy 
aging for all.
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