a 2024

Detection of Lung Parenchymal Lesions in a Low-Prevalence Clinical Setting Using Deep Learning

KVAK, Daniel, Martin ČERNÝ and Jakub DANDÁR

Basic information

Original name

Detection of Lung Parenchymal Lesions in a Low-Prevalence Clinical Setting Using Deep Learning

Authors

KVAK, Daniel, Martin ČERNÝ and Jakub DANDÁR

Edition

European Congress of Radiology 2024, Vienna, 2024

Other information

Type of outcome

Konferenční abstrakt

Confidentiality degree

není předmětem státního či obchodního tajemství

Keywords in English

Artificial Intelligence, Computer applications, Lung, CAD, Digital radiography, PACS, CAD, Computer Applications-Detection, diagnosis, Decision analysis, Cancer

Tags

International impact, Reviewed
Změněno: 18/2/2024 09:10, Mgr. Daniel Kvak

Abstract

V originále

In the area of diagnostic imaging, the chest X-ray (CXR) is a fundamental modality routinely used for diagnostic assessments, particularly in the identification of lung abnormalities. However, the reliability of CXR is often questioned due to limitations of spatial resolution and the diverse nature of human anatomy, with the difficulty of distinguishing diagnostic errors from opinion discrepancies among observers. The aim of this study is to evaluate the performance of an automatic deep learning-based detection (DLAD) algorithm in detecting pulmonary lesions on CXR images, particularly in a clinical setting characterized by low disease prevalence. As computer-aided detection (CAD) systems increasingly move from experimental research into clinical practice, this study serves as a critical examination of their effectiveness, specifically in real-world scenarios that differ from balanced conditions in a simulated environment, i.e., equal numbers of normal and abnormal scans [1,2].
Displayed: 12/11/2024 14:40