Detailed Information on Publication Record
2024
Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems
SIQUEIRA, Tadeu, Charles P. HAWKINS, Julian D. OLDEN, Jonathan TONKIN, Lise COMTE et. al.Basic information
Original name
Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems
Authors
SIQUEIRA, Tadeu (guarantor), Charles P. HAWKINS, Julian D. OLDEN, Jonathan TONKIN, Lise COMTE, Victor S. SAITO, Thomas L. ANDERSON, Gedimar P. BARBOSA, Nuria BONADA, Claudia C. BONECKER, Miguel CANEDO-ARGUEELLES, Thibault DATRY, Michael B. FLINN, Pau FORTUNO, Gretchen A. GERRISH, Peter HAASE, Matthew J. HILL, James M. HOOD, Kaisa-Leena HUTTUNEN, Michael J. JEFFRIES, Timo MUOTKA, Daniel R. DONNELL, Riku PAAVOLA, Petr PAŘIL (203 Czech Republic, belonging to the institution), Michael J. PATERSON, Christopher J. PATRICK, Gilmar PERBICHE-NEVES, Luzia C. RODRIGUES, Susanne C. SCHNEIDER, Michal STRAKA (203 Czech Republic, belonging to the institution) and Albert RUHI
Edition
Ecology, HOBOKEN, Ecological Society of America, 2024, 0012-9658
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10511 Environmental sciences
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 4.800 in 2022
Organization unit
Faculty of Science
UT WoS
001126444300001
Keywords in English
community synchrony; compensatory dynamics; international long-term ecological research (ILTER); metacommunities; mobile consumers; Moran effect; portfolio effect; temporal variability
Tags
Tags
International impact, Reviewed
Změněno: 18/3/2024 17:13, Mgr. Marie Šípková, DiS.
Abstract
V originále
A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, beta = 0.23) and population synchrony (beta = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (beta = 0.73) to secondary consumers (beta = 0.54), to primary consumers (beta = 0.30) to producers (beta = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.
Links
GA23-05268S, research and development project |
|