doi:10.4149/neo_2023_230721N380

Favorable prognostic significance of membranous β -catenin expression and negative prognostic significance of cytoplasmic β -catenin expression in pancreatic cancer

Blanka ROSOVA¹, Jan PROKS², Alzbeta FILIPOVA³, Dimitar Hadzi NIKOLOV⁴, Renata CHLOUPKOVA⁵, Igor RICHTER^{2,6}, Arpad SZABO⁷, Aneta ROZSYPALOVA², Radoslav MATEJ^{1,7}, Bohuslav MELICHAR⁸, Tomas BUCHLER², Josef DVORAK^{2,*}

¹Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic; ²Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic; ³Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic; ⁴Department of Pathology, Regional Hospital, Kolin, Czech Republic; ⁵Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ⁶Department of Oncology, Regional Hospital, Liberec, Czech Republic; ⁷Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic; ⁸Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic

*Correspondence: josef.dvorak@ftn.cz

Received July 21, 2023 / Accepted November 29, 2023

The aim of this study was to investigate the prognostic significance of membranous β -catenin and cytoplasmic β -catenin expression in pancreatic cancer patients (pts). One hundred pts with histologically verified exocrine pancreatic ductal adenocarcinoma were retrospectively studied. The membranous β -catenin, cytoplasmic β -catenin, and cell nucleus β -catenin expression were immunohistochemically evaluated. The expression of membranous β -catenin was <5% in none of the pts, 5–25% in one patient, 26–50% in 2 pts, 51–75% in 14 pts, and >75% in 81 pts. The expression of cytoplasmic β -catenin was <5% in 34 pts, 5–25% in 42 pts, 26–50% in 18 pts, 51–75% in 3 pts, and >75% in one patient. The expression of β -catenin in the cell nucleus was negative in all pts. At the time of the last follow-up, 21 pts were alive and 79 pts had died. Median OS was 1.3 (0.4–2.3) years in pts with membranous β -catenin expression <75% and 1.7 (1.3–2.1) years in pts with membranous β -catenin expression >75% (p=0.045). Median OS was (1.3–2.0) 1.6 years in pts with cytoplasmic β -catenin expression <25% and 0.9 (0.5–1.2) years in pts with cytoplasmic β -catenin expression >25% (p=0.040). In the univariate Cox proportional hazard models HR (95% CI) was 0.556 (0.311–0.995) in pts with membranous β -catenin expression >75% (p=0.048) and 2.200 (1.216–3.980) in pts with cytoplasmic β -catenin expression >25% (p=0.009). The present results indicate a favorable prognostic significance of membranous β -catenin expression in pancreatic cancer.

Key words: β -catenin cytoplasmic; β -catenin membranous; CD8+ tumor infiltrating lymphocytes; pancreatic ductal adenocarcinoma; primary cilia; programmed cell death protein 1

Pancreatic ductal adenocarcinoma (PDAC) is a cancer associated with a poor prognosis. Currently, the only potentially curative treatment is radical surgical resection with microscopically negative margins (R0). Due to an asymptomatic course in most patients with early-stage disease, late diagnosis is a rule, and radical resection is possible in only 20–30% of patients. PDAC is a relatively chemo- and radioresistant tumor with annual mortality close to the annual incidence rates. Recently, much progress has been achieved in the understanding of the mechanisms of anti-tumor immunity, however, immunotherapy has not yet been shown to improve treatment outcomes in PDAC. This apparent lack of efficacy of immunotherapy may be due to a low mutation burden, with a subsequent paucity of T-cell infiltration and the development of an immune-suppressive tumor microenvironment [1, 2].

 β -catenin is a pivotal component of the Wnt signaling pathway [3] that includes several signaling branches, the most important of which is the Wnt/ β -catenin pathway (also called the canonical pathway), which is determined by the β -catenin activity [4]. The canonical aspect of the Wnt signaling pathway is mediated by β -catenin, which upon

Copyright © 2023 The Authors.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source and provide a link to the Creative Commons licence. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

activation translocates to the nucleus [5]. In more than half of all neoplastic disorders, including colorectal carcinoma, breast cancer, liver carcinoma, melanoma, and leukemia, β -catenin accumulates within the cytoplasm or nucleus [6–10]. In normal pancreatic tissue, β -catenin expression is predominantly localized in the membrane of ductal cells. In pancreatic cancer, downregulation of membrane expression and increased cytoplasmic expression are observed [11–15]. Although β -catenin is rarely mutated in cancer, mutations of its main protein partners can confer enhanced stability to β -catenin, causing an aberrant accumulation [16, 17]. β -catenin can promote the progression of tumors by suppressing T-cell responses [18].

The primary cilium is a sensory microtubule-based organelle, which protrudes during the quiescent phase of the cell cycle from the surface of most human cells with the exception of hematopoietic cells [19]. Several signaling pathways are active in primary cilia, including the Wnt [20, 21] and Hedgehog [22, 23] signaling pathways. The formation of primary cilia itself can induce a switch from canonical to non-canonical Wnt signaling [24]. The Wnt/ β -catenin signaling pathway cross-talks with the Hedgehog signal transduction. One of the key proteins of the Hedgehog signaling pathway is the transmembrane protein Smoothened (Smo). The temporary localization of Smo to the primary cilia activates the Hedgehog signaling pathway [25].

Variable		n	%
Gender	Male	53	53.0
	Female	47	47.0
Age at diagnosis (years)	median (range)	66 (3	6-82)
	mean (SD)	65	(9)
Tumor localization	Head of the pancreas	79	79.0
	Body of the pancreas	10	10.0
	Tail of the pancreas	11	11.0
Stage at diagnosis	Ι	26	26.0
	II	56	56.0
	III	13	13.0
	IV	5	5.0
Vascular invasion	Yes	84	84.8
	No	15	15.2
Perineural invasion	Yes	74	88.1
	No	10	11.9
Resection	R0	77	77
	R1	23	23
Tumor grade	G1	1	1.2
(WHO 2016)	G2	35	42.2
	G3	45	54.2
	G4	2	2.4
Patient status	Alive	21	21.0
	Died	79	79.0

Note: ¹No information about vascular invasion in one patient, perineural invasion in 16 patients and grade in 17 patients

The primary cilium is considered to represent a functional homolog of the immune synapse due to morphological and functional similarities in architecture [26, 27].

The aim of this study was to investigate the prognostic significance of membranous β -catenin and cytoplasmic β -catenin expression in PDAC patients. The prognostic significance of several other biomarkers of PDAC microenvironment in potential association with β -catenin expression, including the frequency of primary cilia, Smo expression, CD8+ tumor-infiltrating lymphocytes (TIL) expression, and PD-1 expression were also investigated.

Patients and methods

Study design. The Ethics Committee with multi-center competence of the Institute for Clinical and Experimental Medicine (IKEM) and Thomayer Hospital (TN) discussed and approved submitted documents for the study at its meeting on 8. 2. 2017 (reference number: 2200/16+218/17 (G-16-12-02). One hundred PDAC patients, 53 males and 47 females, median age of 66 (range 36-82) years, were retrospectively evaluated. All patients had histologically verified PDAC; grade 1 in one patient, grade 2 in 35 patients, grade 3 in 45 patients, grade 4 in 2 patients, and unknown grade in 17 patients. The anatomical localization included the head of the pancreas in 79 patients, the body of the pancreas in 10 patients, and the tail of the pancreas in 11 patients. Resection with microscopic residual tumor (R1) was performed in 23 patients while in the 77 patients, radical resection with microscopically negative margins (R0) was possible (Table 1). All studied tumor samples were acquired from pancreatectomy specimens of primary tumors and not from biopsies or metastases.

Immunohistochemistry. An indirect immunohistochemistry method using monoclonal mouse anti-human β -catenin-1 antibody (clone β -catenin-1, Dako, Glostrup, Denmark) (Figure 1A), polyclonal rabbit anti-Smoothened antibody (clone ab113438, Abcam, Cambridge, United Kingdom) (Figure 1B), mouse monoclonal primary antibody against CD8 (M7103, Dako, Glostrup, Denmark; Figure 1C) and mouse monoclonal primary antibody against PD-1 (NAT105, Cell Marque, Darmstadt, Germany; Figure 1D) was used. All slides were assessed by an experienced pathologist not aware of the treatment and outcome of the patients. Immunohistochemistry was scored semiquantitatively as shown in Table 2.

Immunofluorescence. Primary cilia of cells were demonstrated by immunofluorescence using anti-acetylated tubulin-alpha antibody and the nuclei of the cells were visualized using DAPI labeling. The percentage of primary cilia on cells was counted as primary cilia to the cell nuclei ratio as described previously [28] (Figure 1E).

Statistics. Standard descriptive statistics were used to characterize the sample data set. Categorical variables were defined by absolute and relative frequencies; continuous

variables were described by median values (including range) and mean values (including standard deviation). A comparison of the categorical parameters was performed using the Fisher Exact test. In the case of continuous variables, the Mann-Whitney or Kruskal-Wallis test was used. ROC analysis was calculated to estimate the optimal cut-off value for the frequency of cilia. The optimal cut-off was selected according to the criterion of maximizing the product of sensitivity and specificity. Overall survival (OS) was estimated using Kaplan Meier method and all point estimates were accompanied by 95% confidence intervals (95% CI). OS was defined as the time from diagnosis to death from any cause. Surviving patients were censored at the date of the last update. Comparison of OS between subgroups of patients was carried out by log-rank test. Univariable Cox proportional hazards models were used to evaluate the effect of potential prognostic factors on the survival measures. Point estimates of hazard ratio (HR) were calculated with 95% confidence intervals. The statistical significance of hazard ratios was assessed by the mean of the Wald test. As a level of statistical signifikance, α =0.05 was used.

Results

Descriptive statistics of the investigated biomarkers are summarized in Table 2. The expression of membranous β -catenin was <5% in none patients, 5–25% in one patient, 26–50% in 2 patients, 51–75% in 14 patients, and >75% in 81 patients. The expression of cytoplasmic β -catenin was <5% in 34 patients, 5–25% in 42 patients, 26–50% in 18 patients, 51–75% in 3 patients, and >75% in one patient. The expression of β -catenin in the cell nucleus was negative in all patients.

At the time of the last follow-up update, 21 patients were alive and 79 patients had died. Median overall survival (OS) was 1.6 years (95% CI 1.3–1.8), 1-year OS rate was 64.7% (95% CI 55.2–74.3), 2-year OS was 36.3% (95% CI 26.2–46.4), and 3-year OS was 19.9% (95% CI 11.3–28.6).

Median OS was 1.3 (95% CI 0.4-2.3) years in patients with membranous β -catenin expression $\leq 75\%$ and 1.7 (95% CI 1.3–2.1) years in patients with membranous β -catenin expression >75% (p=0.045; Table 3 and Figure 2). There was no correlation between tumor grade and membranous cytoplasmic β-catenin expression (Table 4). Median OS was 1.6 (95% CI 1.3–2.0) years in patients with cytoplasmic β -catenin expression $\leq 25\%$ and 0.9 (95% CI 0.5–1.2) years in patients with cytoplasmic β-catenin expression >25% (p=0.040; Table 5 and Figure 2). There was a significant association between higher membranous β -catenin and tumor grade with cytoplasmic β -catenin (Table 6). The frequency of primary cilia did not have a statistically significant effect on OS (Table 7 and Figure 3). Table 8 shows the OS according to other evaluated biomarkers, including frequency of primary cilia, Smo expression, CD8+ TIL expression, and PD-1 expression. In the univariable Cox proportional hazard models, HR

Table 2 Prognostic factors¹

Variable		n	%
Membranous β -catenin	<5%	0	0.0
	5-25%	1	1.0
	26-50%	2	2.0
	51-75%	14	14.3
	>75%	81	82.7
Cytoplasmic β-catenin	<5%	34	34.7
	5-25%	42	42.9
	26-50%	18	18.4
	51-75%	3	3.1
	>75%	1	1.0
Without cilia	Yes	42	54.5
	No	35	45.5
Frequency of cilia	n median (range) (00-0.004)
	mean (SD)	0.001 (0	0.001)
Smo	<5%	0	0.0
	5-25%	3	3.0
	26-50%	6	6.1
	51-75%	11	11.1
	>75%	79	79.8
CD8+ TIL	Negative	0	0.0
	<25%	85	85.0
	25-50%	15	15.0
	> 50%	0	0.0
PD-1	<5%	68	68.0
	5-25%	30	30.0
	26-50%	2	2.0
	51-75%	0	0.0
	>75%	0	0.0

Note: ¹No information about membranous β -catenin in 2 patients, cytoplasmic β -catenin in 2 patients, cilia in 23 patients and Smo in one patient

Table 3. Overall survival from diagnosis according to membranous β -catenin expression

	Membranou		
	≤75% (n=17)	>75% (n=81)	p-value
Median OS (95% CI)	1.3 years (0.4–2.3)	1.7 years (1.3–2.1)	
1-year OS (%; 95% CI)	57.4 (33.3-81.4)	67.9 (57.4–78.3)	0.045
2-year OS (%; 95% CI)	15.3 (0.1–34.3)	41.5 (30.0-53.0)	0.043
3-year OS (%; 95% CI)	7.6 (0.1–21.9)	22.8 (12.8-32.9)	
Note: ¹ Log-rank test			

Table 4. Association of tumor grade and cytoplasmic β -catenin expression with membranous β -catenin expression

Chamadaniatian		Membranou	- m malmal	
Characteristic	CS .	≤75% (n=17)	>75% (n=81)	- p-value
	<5%	0 (0.0)	34 (42.0)	
Cytoplasmic B-catenin	5-25%	5 (29.4)	37 (45.7)	< 0.001
p-catellin	>25%	12 (70.6)	10 (12.3)	
	G1	0 (0.0)	1 (1.5)	
Tumor grade	G2	4 (26.7)	31 (47.0)	0.262
(WHO 2016)	G3	10 (66.7)	33 (50.0)	0.262
	G4	1 (6.7)	1 (1.5)	

Note: 1Fisher exact test

Figure 1. A) β -catenin expression. Immunohistochemical staining with monoclonal mouse anti-human β -catenin-1 antibody (clone β -catenin-1, Dako, Glostrup, Denmark) was used. Magnification 100×. B) Smoothened protein expression. Immunohistochemical staining with polyclonal rabbit antismoothened antibody (clone ab113438, Abcam, Cambridge, United Kingdom) was used. Magnification 100×. C) CD8+ expression of cytotoxic T lymphocytes using human antibody in stromal areas of pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibodies against CD8 (M7103, Dako, Glostrup, Denmark) was used. Magnification 100×. D) PD-1 expression using mouse monoclonal primary antibody in pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibody in pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibody in pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibody in pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibody in pancreatic adenocarcinoma. An indirect immunohistochemistry using mouse monoclonal primary antibodies against PD-1 (NAT105, Cell Marque, Darmstadt, Germany) was used. Magnification 100×. E) Primary cilia of cells of pancreatic adenocarcinoma immunofluorescently labeled using anti-acetylated tubulin-alpha antibody and cell nuclei labeled using DAPI. Magnification 100×.

Figure 2. Overall survival from diagnosis according to membranous β -catenin expression and overall survival from diagnosis according to cytoplasmic β -catenin expression.

(95% CI) was 0.556 (0.311–0.995) in patients with membranous β -catenin expression >75% (p=0.048) and HR (95% CI) 2.200 (1.216–3.980) in patients with cytoplasmic β -catenin expression >25% (p=0.009; Table 9). Multivariate testing showed that cytoplasmic β -catenin expression and tumor grade were associated with prognosis (Table 10).

Discussion

Present data indicate a favorable prognostic significance of membranous β -catenin expression and a negative prognostic significance of cytoplasmic β -catenin expression in pancreatic cancer. Due to the negative expression of β -catenin in the cell nucleus, there are only two possibilities for the localization of β -catenin (membranous and cytoplasmic). Essentially, they must be correlated if they are not distributed in the same proportion in the membrane cytoplasm. Because in the case of a two-location system, the positive prognosis linked to one location means a negative prognosis of the second location.

Survival rates of PDAC patients are disappointing. The Wnt/ β -catenin signaling pathway is involved in pancreatic carcinogenesis and resistance to current therapies [2]. In the treatment of PDAC, targeting the Wnt/ β -catenin signaling pathway is an actively pursued experimental strategy. Several novel inhibitors for the Wnt/ β -catenin signaling pathway that have been developed are presently tested in clinical trials [2, 29]. Since Wnt signaling is shared by both cancer cells and normal body tissues, controlling the side effects associated with targeting the Wnt pathway may be difficult [2].

In the normal pancreas, β -catenin expression is predominantly localized in the membrane of ductal cells. In PDAC, the downregulation of membrane expression and increased cytoplasmic expression were noted [11–15]. The results of the present study are consistent with the above literature. In this study, a statistically significant inverse correlation

Figure 3. Overall survival from diagnosis according to the frequency of cilia.

Table 5. Overall survival from diagnosis according to cytoplasmic β -catenin expression.

	Cytoplasmi		
	≤25% (n=76)	>25% (n=24)	p-value
Median OS (95% CI)	1.6 years (1.3-2.0)	0.9 years (0.5–1.2)	
1-year OS (%; 95% CI)	69.7 (59.1-80.3)	49.4 (29.1–69.6)	0.040
2-year OS (%; 95% CI)	40.5 (28.7-52.3)	22.8 (4.2-41.4)	0.040
3-year OS (%; 95% CI)	24.1 (13.5–34.6)	5.7 (0.1-16.4)	
Note: II on nonly toot			

Note: 1Log-rank test

Table 6. Association of tumor grade and membranous β -catenin expression with cytoplasmic β -catenin expression.

Characteristics		Cytoplasm	Cytoplasmic β-catenin		
		≤25% (n=76)	>25% (n=24)	- p-value	
Membranous	≤75%	5 (6.6)	12 (54.5)	<0.001	
β-catenin	>75%	71 (93.4)	10 (45.5)	< 0.001	
	G1	1 (1.6)	0 (0.0)		
Tumor grade	G2	32 (51.6)	3 (14.3)	0.004	
(WHO 2016)	G3	27 (43.5)	18 (85.7)	0.004	
	G4	2 (3.2)	0 (0.0)		

Note: 1Fisher exact test

between membranous and cytoplasmic β -catenin expression was observed. The expression of β -catenin in the cell nucleus was negative in all patients of the present cohort.

The correlation of reduced membranous β -catenin expression with the loss of tumor differentiation in PDAC has been reported in the literature [11]. In the present study statistically significant association with tumor grade on cytoplasmic β -catenin expression, but not with membranous β -catenin expression was observed.

Furthermore, the prognostic significance of other evaluated biomarkers of pancreatic cancer that could be related to β -catenin expression could not be demonstrated.

Table 7. Prediction of mortality by frequency of clifa-diagnostic	test.
---	-------

	Valid N	Cut-off ¹	AUC	p-value	Sensitivity	Specificity	PPV	NPV	Accuracy
All patients	77	0.00091	0.553	0.507	0.467	0.412	0.737	0.179	0.455
		-							

Note: ¹Smaller value than cut-off corresponds to events (death)

Abbreviations: AUC-Area under curve; PPV-Positive predictive value; NPV-Negative predictive value

Table 8. Overall survival from diagnosis.

Overall survival from diagnosis according to the frequency of cilia					
	Frequenc	1 1			
	<0.00091 (n=39)	>0.00091 (n=38)	p-value		
Median OS (95% CI)	1.2 years (0.7-1.8)	1.6 years (1.4-1.9)			
1-year OS (%; 95% CI)	57.0 (41.0-73.0)	64.4 (48.9-80.0)	0.262		
2-year OS (%; 95% CI)	29.1 (13.7-44.6)	37.5 (20.6–54.4)	0.363		
3-year OS (%; 95% CI)	16.2 (3.4–29.0)	17.3 (2.8-31.9)			
Overall survival from o	diagnosis according	to Smo expression			
	Sn	10			
	≤75% (n=20)	>75% (n=79)	p-value.		
Median OS (95% CI)	1.6 years (0.0-3.5)	1.6 years (1.4-1.8)			
1-year OS (%; 95% CI)	55.0 (33.2-76.8)	68.2 (57.7–78.7)	0.540		
2-year OS (%; 95% CI)	44.0 (21.9-66.1)	34.6 (23.2-46.0)	0.549		
3-year OS (%; 95% CI)	22.0 (3.2-40.8)	19.7 (9.8–29.5)			
Overall survival from diagnosis according to CD8+ TIL expression					
	CD8+ intr	ratumoral	n valual		
	<25% (n=85)	25-50% (n=15)	p-value		
Median OS (95% CI)	1.6 years (1.2-1.9)	1.7 years (1.1-2.2)			
1-year OS (%; 95% CI)	63.5 (53.1-74.0)	71.8 (48.3–95.3)	0.200		
2-year OS (%; 95% CI)	38.5 (27.5-49.6)	23.9 (0.5-47.4)	0.300		
3-year OS (%; 95% CI)	22.1 (12.3-31.8)	8.0 (0.1-22.9)			
Overall survival from o	liagnosis according	to PD-1 expression	L		
PD-1					
	<5% (n=68)	>5% (n=32)	p-value		
Median OS (95% CI)	1.5 years (1.2-1.7)	1.7 years (1.4-1.9)			
1-year OS (%; 95% CI)	63.3 (51.5-75.0)	67.8 (51.4-84.2)	0.421		
2-year OS (%; 95% CI)	41.1 (28.7–53.4)	24.3 (7.7-40.8)	0.421		
3-year OS (%; 95% CI)	24.9 (13.7-36.1)	8.1 (0.1–18.8)			
Note: 1Log-rank test			-		

Loss of primary cilia in the early stage of PDAC has been reported in the literature [30, 31]. One study noted that the presence of primary cilia correlates with a poor prognosis in PDAC [32]. In the present study patients with a higher frequency of primary cilia (>0.00091) had longer median OS than patients with a lower frequency of primary cilia (<0.00091) with a shorter median OS, but this difference was not statistically significant.

Aberrant expression of Smo has been described in many cancers [25]. Increased Smo protein expression has been reported in the literature in most PDAC cases [25, 33]. In the present study, we observed higher (>75%) Smo expression in 79 (79.8%) patients, but no prognostic significance of the Smoothened protein expression was evident.

Several studies reported positive prognostic significance of CD8+ TIL expression [34–37] and PD-1 expression [34]

Table 9. Surviva	l analysis-univaria	able Cox prop	oortional hazard 1	nodel.
------------------	---------------------	---------------	--------------------	--------

Character- istic	Category	n	HR (95% CI)	p-value ¹
Membranous	≤75%	17	1.000	-
β-catenin	>75%	81	0.556 (0.311-0.995)	0.048
Cytoplasmic	<5%	34	1.000	-
β-catenin	5-25%	42	1.649 (0.978-2.780)	0.060
	>25%	24	2.200 (1.216-3.980)	0.009
Frequency of cilia	(continuous- 0.01 change)	77	0.103 (0.004–2.449)	0.160
Frequency	< 0.00091	39	1.000	-
of cilia	>0.00091	38	0.788 (0.471-1.318)	0.364
Smo	≤75%	20	1.000	-
	>75%	79	1.186 (0.677-2.078)	0.550
CD8+ TIL	>25%	85	1.000	-
	25-50%	15	1.301 (0.714-2.370)	0.390
PD-1	<5%	68	1.000	-
	>5%	32	1.220 (0.750-1.985)	0.422
Smo	≤75%	20	1.000	-
	>75%	79	1.186 (0.677-2.078)	0.550

Note: 1Wald test

Table 10. Survival analysis-multivariable Cox-proportional hazard model.

Characteristic	Category	n	HR (95% CI)	p-value ¹
Membranous β-catenin	≤75%	17	1.000	-
	>75%	81	0.874 (0.402-1.899)	0.734
Cytoplasmic β-catenin	<5%	34	1.000	-
	5-25%	42	1.608 (0.931-2.777)	0.089
	>25%	22	2.664 (1.208-5.875)	0.015
Tumor grade	1	26	1.000	-
(WHO 2016)	2	54	1.031 (0.583-1.825)	0.915
	3	13	1.744 (0.760-3.999)	0.189
	4	5	5.709 (1.907-17.091)	0.002
Sex	female	46	1.000	-
	male	52	1.130 (0.686-1.862)	0.631
Age at diagnosis (years)	<60	26	1.000	-
	60-69	36	1.187 (0.643-2.190)	0.584
	≥70	36	1.386 (0.742-2.590)	0.306

Note: 1Wald test

in PDAC. In this study, patients with higher (25–50%) CD8+ TIL expression had a longer median OS survival than patients with lower (<25%) CD8+ TIL expression, but the difference was not statistically significant. Similarly, this cohort of patients with higher PD-1 expression (>5%) had a longer median OS than patients with lower PD-1 expression (<5%), but again, this difference was not statistically significant. The limitations of this study include the relatively small patient cohort, the retrospective design as well as the limitations of immunohistochemical and immunofluorescent methods. The patient cohort was heterogeneous with regard to the stage, location of the primary tumor within the pancreas as well as the therapy.

In conclusion, the data of the present study indicate favorable prognostic significance of membranous β -catenin expression and negative prognostic significance of cytoplasmic β -catenin expression in pancreatic cancer and, thus, relatively cheap and easier immunohistochemical investigation could be used as a useful prognostic marker in PDAC. Moreover, the correlative data obtained can become the basis and justification for functional studies.

Acknowledgments: This study was supported by Ministry of Health of the Czech Republic (project RVO Thomayer University Hospital - TUH, 00064190), the Charles University, Prague, Czech Republic (project Cooperatio Medical Diagnostics), DRO of the University of Defence, Faculty of Military Health Sciences Hradec Kralove, Czech Republic - Medical issues of WMD II, (DZRO-FVZ22-ZHN II) and the project National Institute for Cancer Research (Programme EXCELES, ID Project No. LX22NPO5102) -Funded by the European Union - Next Generation EU.

References

- MORRISON AH, BYRNE KT, VONDERHEIDE RH. Immunotherapy and prevention of pancreatic cancer. Trends Cancer 2018; 4: 418–428. https://doi.org/10.1016/j.trecan.2018.04.001
- [2] RAM MAKENA M, GATLA H, VERLEKAR D, SUKHAVASI S, K PANDEY M et al. Pramanik K. Wnt/β-catenin signaling: The culprit in pancreatic carcinogenesis and therapeutic resistance. Int J Mol Sci 2019; 20: 4242. https://doi.org/10.1002/ jcb.2847710.3390/ijms20174242
- [3] SHANG S, HUA F, HU ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017; 8: 33972–33989. https://doi.org/10.18632/ oncotarget.15687
- [4] BRYJA V, ČERVENKA I, ČAJÁNEK L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 2017; 52: 614–637. https://doi.org/10.1080/10409238.2017.1350135
- [5] MACDONALD BT, TAMAI K, HE X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26. https://doi.org/10.1016/j.devcel.2009.06.016
- [6] KHRAMSTOV AI, KHRAMSTOVA GF, TRETIAKOVA M, HUO D, OLOPADE OI et al. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 2010; 176: 2911–2920. https:// doi.org/10.2353/ajpath.2010.091125
- [7] TAO J, CALVISI DF, RANANGANATHAN S, CIGLIANO A, ZHOU L et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014; 147: 690–701. https://doi. org/10.1053/j.gastro.2014.05.004

- [8] KOBAYASHI M, HONMA T, MATSUDA Y, SUZUKI Y, NARISAWA R et al. Nuclear translocation of beta-catenin in colorectal cancer. Br J Cancer 2000; 82: 1689–1693. https:// doi.org/10.1054/bjoc.1999.1112
- [9] DAMSKY WE, CURLEY DP, SANTHANAKRISHAN M, ROSENBAUM LE, PLATT JT et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20: 741–754. https://doi.org/10.1016/j. ccr.2011.10.030
- [10] GEKAS C, D'ALTRI T, ALIGUÉ R, GONZÁLEZ J, ESPINO-SA L et al. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 2016; 30: 2002–2010. https://doi.org/10.1038/leu.2016.106
- [11] LOWY AM, FENOGLIO-PREISER C, KIM OJ, KORDICH J, GOMEZ A et al. Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma. Ann Surg Oncol 2003; 10: 284–290. https:// doi.org/10.1245/aso.2003.05.003
- [12] LI YJ, WEI ZM, MENG YX, JI XR. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol 2005; 11: 2117–2123. https:// doi.org/10.3748/wjg.v11.i14.2117
- [13] QIAO Q, RAMADANI M, GANSAUGE S, GANSAUGE F, LEDER G et al. Reduced membranous and ectopic cytoplasmic expression of beta -catenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer. Int J Cancer 2001; 95: 194–197. https://doi.org/10.1002/1097-0215(20010520)95:3<194</p>
- [14] KARAYAIANNAKIS AJ, SYRIGOS KN, POLYCHRONIDIS A, SIMOPOULOS C. Expression patterns of alpha-, betaand gamma-catenin in pancreatic cancer: correlation with E-cadherin expression, pathological features and prognosis. Anticancer Res 2001; 21: 4127–4134.
- [15] WANG Z, MA Q, LI P, SHA H, LI X, XU J. Aberrant expression of CXCR4 and β-catenin in pancreatic cancer. Anticancer Res 2013; 33: 4103–4110.
- PEDONE E, MARUCCI L. Role of β-Catenin activation levels and fluctuations in controlling cell fate. Genes (Basel) 2019; 10: E176. https://doi.org/10.3390/genes10020176
- [17] XU Q, KRAUSE M, SAMOYLENKO A, VAINIO S. Wnt signaling in renal cell carcinoma. cancers (Basel) 2016; 8: E57. https://doi.org/10.3390/cancers8060057
- [18] HONG Y, MANOHARAN I, SURYAWANSCHI A, MA-JUMDAR T, ANGUS-HILL ML et al. β-catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res 2015; 75: 656–665. https://doi.org/10.1158/0008-5472
- [19] SATIR P, PEDERSEN LB, CHRISTENSEN ST. The primary cilium at a glance. J Cell Sci 2010; 123: 499–503. https://doi. org/10.1242/jcs.050377
- [20] LEE KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020; 287: 5027–5038. https://doi.org/10.1111/febs.15579
- [21] OH EC, KATSANIS N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 2013; 24: 10–18. https://doi.org/10.1681/ASN.2012050526

- [22] NOZAWA YI, LIN C, CHUANG PT. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev 2013; 23: 429–437. https://doi.org/10.1016/j. gde.2013.04.008
- [23] ROHATGI R, MILENKOVIC L, SCOTT MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317: 372–376. https://doi.org/10.1126/science.1139740
- [24] MCMURRAY RJ, WANN AK, THOMPSON CL, CON-NELLY JT, KNIGHT MM. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 2013; 3: 3545. https://doi. org/10.1038/srep03545
- [25] NIYAZ M, KHAN MS, WANI RA, SHAH OJ, BESINA S et al. Nuclear localization and overexpression of smoothened in pancreatic and colorectal cancers. J Cell Biochem 2019; 10.1002/jcb.28477. https://doi.org/10.1002/jcb.28477
- [26] DVORAK J, HADZI NIKOLOV D, DUSEK L, FILIPOVA A, RICHTER I, et al. Association of the combined parameters including the frequency of primary cilia, CD8+ tumor infiltrating lymphocytes and PD-1 expression with the outcome in intestinal cancer. J BUON 2017; 22: 1477–1487.
- [27] CASSIOLI C, BALDARI CT. A ciliary view of the immunological synapse. Cells 2019; 8:789. https://doi.org/10.3390/ cells8080789
- [28] DVORAK J, HADZI NIKOLOV D, DUSEK L, FILIPOVA A, RICHTER I et al. Prognostic significance of the frequency of primary cilia in cells of small bowel and colorectal adenocarcinoma. J BUON 2016; 21: 1233–1241.
- [29] KRISHNAMURTHY N, KURZROCK R. Targeting the Wnt/ beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 2018; 62: 50–60. https://doi. org/10.1016/j.ctrv.2017.11.002
- [30] SEELEY ES, CARRIÈRE C, GOETZE T, LONGNECKER DS, KORC M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 2009; 69: 422–430. https://doi.org/10.1158/0008-5472.CAN-08-1290

- [31] PEIXOTO E, RICHARD S, PANT K, BISWAS A, GRA-DILONE SA. The primary cilium: Its role as a tumor suppressor organelle. Biochem Pharmacol 2020; 175: 113906. https://doi.org/10.1016/j.bcp.2020.113906
- [32] EMOTO K, MASUGI Y, YAMAZAKI K, EFFENDI K, TSU-JIKAWA H et al. Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum Pathol 2014; 45: 817–825. https://doi.org/10.1016/j. humpath.2013.11.017
- [33] SHAO J, ZHANG L, GAO J, LI Z, CHEN Z. Aberrant expression of PTCH (patched gene) and Smo (smoothened gene) in human pancreatic cancerous tissues and its association with hyperglycemia. Pancreas 2006; 33: 38–44. https://doi. org/10.1097/01.mpa.0000222319.59360.21
- [34] DIANA A, WANG LM, D'COSTA Z, ALLEN P, AZAD A et al. Prognostic value, localization and correlation of PD-1/ PD-L1, CD8 and FOXP3 with the desmoplastic stroma in pancreatic ductal adenocarcinoma. Oncotarget 2016; 7: 40992-41004. https://doi.org/10.18632/oncotarget.10038
- [35] FUKUNAGA A, MIYAMOTO M, CHO Y, MURAKAMI S, KAWARADA Y et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 2004; 28: e26–e31. https:// doi.org/10.1097/00006676-200401000-00023
- [36] INO Y, YAMAZAKI-ITOH R, SHIMADA K, IWASAKI M, KOSUGE T et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 2013; 108: 914–923. https://doi.org/10.1038/ bjc.2013.32
- [37] KARAKHANOVA S, RYSCHICH E, MOSL B, HARIG S, JÄGER D et al. Prognostic and predictive value of immunological parameters for chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br J Cancer 2015; 112: 1027–1036. https://doi.org/10.1038/bjc.2015.72