J 2024

Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles

FARKA, Zdeněk, Karolína VYTISKOVÁ, Ekaterina MAKHNEVA, Eva ZIKMUNDOVÁ, Daniel HOLUB et. al.

Basic information

Original name

Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles

Authors

FARKA, Zdeněk (203 Czech Republic, guarantor, belonging to the institution), Karolína VYTISKOVÁ (203 Czech Republic), Ekaterina MAKHNEVA (643 Russian Federation, belonging to the institution), Eva ZIKMUNDOVÁ (203 Czech Republic), Daniel HOLUB, Jakub BUDAY, David PROCHAZKA, Karel NOVOTNÝ (203 Czech Republic, belonging to the institution), Petr SKLÁDAL (203 Czech Republic, belonging to the institution), Pavel POŘÍZKA (203 Czech Republic) and Jozef KAISER (203 Czech Republic)

Edition

Analytica Chimica Acta, Elsevier, 2024, 0003-2670

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10406 Analytical chemistry

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.200 in 2022

Organization unit

Faculty of Science

UT WoS

001209691500001

Keywords in English

Laser-induced breakdown spectroscopy; Double pulse; Tag-LIBS; Photon-upconversion nanoparticle; Immunoassay; Human serum albumin

Tags

Tags

International impact, Reviewed
Změněno: 10/5/2024 12:47, Mgr. Marie Šípková, DiS.

Abstract

V originále

Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL−1 to 0.29 ng mL−1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.

Links

EF18_053/0016952, research and development project
Name: Postdoc2MUNI
GA22-27580S, research and development project
Name: Laserová spektroskopie v imunostanovení a zobrazování s nanometalickými značkami (Acronym: IMMUNOLIBS)
Investor: Czech Science Foundation