J 2023

Ability of Radiomics Versus Humans in Predicting First-Pass Effect After Endovascular Treatment in the ESCAPE-NA1 Trial

BALA, Fouzi, Wu QIU, Kairan ZHU, Manon KAPPELHOF, Petra CIMFLOVÁ et. al.

Basic information

Original name

Ability of Radiomics Versus Humans in Predicting First-Pass Effect After Endovascular Treatment in the ESCAPE-NA1 Trial

Authors

BALA, Fouzi, Wu QIU, Kairan ZHU, Manon KAPPELHOF, Petra CIMFLOVÁ (203 Czech Republic, belonging to the institution), Beom Joon KIM, Rosalie MCDONOUGH, Nishita SINGH, Nima KASHANI, Jianhai ZHANG, Mohamed NAJM, Johanna M OSPEL, Ankur WADHWA, Raul G NOGUEIRA, Ryan A MCTAGGART, Andrew M DEMCHUK, Alexandre Y POPPE, Charlotte ZERNA, Manish JOSHI, Mohammed A ALMEKHLAFI, Mayank GOYAL, Michael D HILL and Bijoy K MENON

Edition

Stroke: Vascular and Interventional Neurology, Hoboken, Wiley, 2023, 2694-5746

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

30210 Clinical neurology

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/00216224:14110/23:00133719

Organization unit

Faculty of Medicine

UT WoS

001162312700004

Keywords in English

deep learning; endovascular therapy; ischemia; machine learning; stroke; thrombus

Tags

Tags

International impact, Reviewed
Změněno: 4/3/2024 07:50, Mgr. Tereza Miškechová

Abstract

V originále

BACKGROUND: First-pass effect (FPE), that is, achieving reperfusion with a single thrombectomy device pass, is associated with better clinical outcomes in patients with acute stroke. FPE is therefore increasingly used as a marker of device and procedural efficacy. We aimed to evaluate the ability of thrombus-based radiomics models to predict FPE in patients undergoing endovascular thrombectomy and compare performance with experts and nonradiomics thrombus characteristics.