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Motivation
̶ Psychological questionnaires are rarely unidimensional, 

especially when they contain both regular and reverse items.
̶ Some authors dismiss reverse items (multidimensionality 

contradicts theory, more complex models are necessary, lower 
reliability, confused respondents).

̶ Potential benefits of reverse items: implicit correction of 
response bias, reduction of monotony (higher engagement), 
better construct coverage (higher content validity). 
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Previous explanations
̶ Responses to reversed items are influenced by construct-

irrelevant factors to a greater extent or in a different direction 
than regular items, such as acquiescence bias (Cronbach, 1942; 
1950); social desirability (Krumpal, 2013; Paulhus, 1991; Rauch et 
al. , 2007); carelessness (Schmitt & Stults, 1985; Woods, 2006); or 
insufficient verbal ability (Marsh, 1996; Gnambs & Schroeders, 
2020).

̶ More recently, Kam et al. (Kam et al., 2021; Kam & Meyer 2022) 
found that the relationship between the scores derived from regular 
and reverse items are related in a nonlinear fashion.

̶ Kam et al. argue that the pattern of responses of "average" 
respondents to regular vs. reverse items is inconsistent 
because they disagree with both regular and reverse items.
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Older literature
̶ The notions of spurious multidimensionality appear in much 

older sources (Bernstein & Teng, 1989; Carroll, 1945; 
Ferguson, 1941).

̶ However, these authors framed the problem differently: item 
difficulty, together with their ordinal and bounded nature, 
affect the distribution of item responses (more difficult items 
are right skewed, easier items are left skewed).

̶ This affects the strength of the correlations between items, 
because the more the item distributions differ, the smaller the 
maximum correlation value can be.

̶ Regular items are usually more difficult than reverse items.
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Our account
̶ What the previous authors describe is only a symptom.
̶ The true cause of spurious multidimensionality is a misspecified 

relationship between a latent variable and its indicator (item 
response).

̶ In other words, the model implied relationships between a latent 
variable and its indicator(s) does match the empirical one.

̶ If the item response function is misspecified, items can share a 
similar pattern of misfit/residuals.

̶ If there are multiple such shared patterns, the unidimensional 
model will, by definition, show a poor fit to the data.

̶ Since items share certain characteristics (e.g.,  common 
response scale, difficulty), it is likely that the shared patterns of 
misfit/residuals emerge.
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An empirical 
study



Instruments and design
̶ Three self-report inventories: Height Inventory,  Weight Inventory,  

Age Inventory.
̶ Sample items: I am taller than men of my age. I often need a stool 

to reach something other people would reach normally.
̶ Two response scales: Likert (agree–disagree), item-specific

(expanded item format).
̶ Two types of factor analysis: continuous (MLR) vs. ordinal

(WLSMV).
̶ The participants also reported their height, weight, and age.
̶ For simplicity, we will focus on the Height Inventory with the 

traditional Likert response scale and linear factor analysis (that 
treats items as continuous, interval variables).
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Research sample
̶ N = 12,158 (49 % male).
̶ Height ranged from 143 to 215 cm (M = 174.8, SD = 10.1).
̶ Age ranged from 18 to 85 years (M = 36.5, SD = 13.8).
̶ Weight ranged from 40 to 172 kg (M = 81.0, SD = 19.6). 
̶ BMI ranged from 14.2 to 59.1 kg/m2 (M = 26.4, SD = 5.67).
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Aims and hypotheses
̶ Demonstrate that a misspecified response function is a sufficient 

cause of spurious multidimensionality.
̶ We expected: 
1. More misfitting items to have stronger loadings on the specific 

factor.
2. The specific factor to still contain construct-relevant variance, 

that is, to be related to the general factor, but in a non-linear 
fashion.

3. The shape of their relationship to mirror the shared pattern of 
item misfit.
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Model fit
̶ The unidimensional model showed a mediocre fit to the 

data: χ2(180) =  5280.9 (unscaled 6623.1), p < 0.001, CFI = 
0.917, TLI = 0.903, RMSEA = 0.077 (90% CI [0.075, 0.079]), 
SRMR = 0.049.

̶ The bifactor i-1 model showed an excellent fit to the data:
χ2(180) =  672.5, (unscaled = 736,4) p < 0.001, CFI = 0.992, 
TLI = 0.989, RMSEA = 0.025 (90% CI [0.024, 0.027]), SRMR 
= 0.012.

̶ The difference in fit was statistically significant:
χ2(180) =  5085,6, p < 0.001.

# Ps y c h o c o  2 0 2 4 1 5



Item fit
̶ First, we have computed factor scores estimates for reach respondent. 
̶ Second, we computed model-predicted item scores for each 

respondent and item.
̶ Then we computed "empirical" item scores using spline regression.
̶ The correlation between the model-predicted item scores and empirical 

item scores was used as a measure of item fit.
̶ As expected, the items with poor fit tended to have stronger loadings on 

the secondary factor. 
̶ The correlation between item fit and the loadings on the specific 

factor was strong: Spearman's ρ = –.70, 
95% CI [–.86, –.41], p < .001.
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Cubic splines 
regression:
R2 = 0.28

Linear regression with 
a quadratic term:
R2 = 0.27

Squared Pearson 
correlation:
r2 < 0.01



I am used to hearing comments about how tall I am.
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Ordinary beds are too short for me.
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I often need to be careful to avoid bumping my head 
against a doorjamb or a low ceiling.
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I often need a stool to reach something other people 
would reach without it. (reversed) 
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I could play a dwarf. (reversed)
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Conclusions
̶ The results supported the hypothesis that a misspecified 

relationship between a latent variable and its indicator (item 
response) results in a shared pattern of misfit/residuals 
between items,

̶ In turn, this shared pattern results in a worse fit of a 
unidimensional model and the "emergence" of secondary 
factor(s).

̶ We know that these factors are "spurious" because they are 
nonlinearly related to the general factor and thus still contain 
construct-relevant variance.
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Main takeaway
̶ In order to interpret the secondary factors as substantive, or 

content factors, it is first necessary to verify that the 
relationship between the latent variable and the items is not 
misspecified.

̶ Otherwise. there is a risk that the secondary factors are 
merely a statistical artifact.
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What to do about it
̶ Thus, in the practical application of factor analysis, we recommend 

checking the following things to avoid interpreting spurious factors as 
substantive factors:

1. Is the relationship between the latent variable and the item specified 
correctly?

2. Do the items with the largest loadings on the secondary factor(s) share 
the same (or mirror-reversed) pattern of misfit/residuals (when plotted 
against the general factor)?

3. Is the primary factor strongly, but non-linearly related to the secondary 
factor(s). And if so, does the shape of the relationship mirror the pattern 
of residuals (from the previous step).
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