MUNI FSS

A unifying account of spurious multidimensionality in psychological questionnaires

Karel Rečka, David Elek

Department of Psychology, Faculty of Social Studies, Masaryk University, Brno, Czech Republic

#psychoco 2024

Content

- Previous explanations of multidimensionality
- Our explanation of the phenomenon
- Empirical study:
 - Design and hypotheses
 - Results
 - Model vs. Item fit in detail
- Conclusions

Motivation

- **Psychological questionnaires are rarely unidimensional**, especially when they contain both regular and reverse items.
- Some authors dismiss reverse items (multidimensionality contradicts theory, more complex models are necessary, lower reliability, confused respondents).
- Potential benefits of reverse items: implicit correction of response bias, reduction of monotony (higher engagement), better construct coverage (higher content validity).

Previous explanations

- Responses to reversed items are influenced by constructirrelevant factors to a greater extent or in a different direction than regular items, such as acquiescence bias (Cronbach, 1942; 1950); social desirability (Krumpal, 2013; Paulhus, 1991; Rauch et al., 2007); carelessness (Schmitt & Stults, 1985; Woods, 2006); or insufficient verbal ability (Marsh, 1996; Gnambs & Schroeders, 2020).
- More recently, Kam et al. (Kam et al., 2021; Kam & Meyer 2022) found that the relationship between the scores derived from regular and reverse items are related in a nonlinear fashion.
- Kam et al. argue that the pattern of responses of "average" respondents to regular vs. reverse items is inconsistent because they disagree with both regular and reverse items.

#Psychoco 2024

Older literature

- The notions of *spurious multidimensionality* appear in much older sources (Bernstein & Teng, 1989; Carroll, 1945; Ferguson, 1941).
- However, these authors framed the problem differently: item difficulty, together with their ordinal and bounded nature, affect the distribution of item responses (more difficult items are right skewed, easier items are left skewed).
- This affects the strength of the correlations between items, because the more the item distributions differ, the smaller the maximum correlation value can be.
- Regular items are usually more difficult than reverse items.

Our account

- What the previous authors describe is only a symptom.
- The true cause of spurious multidimensionality is a misspecified relationship between a latent variable and its indicator (item response).
- In other words, the model implied relationships between a latent variable and its indicator(s) does match the empirical one.
- If the item response function is misspecified, items can share a similar pattern of misfit/residuals.
- If there are multiple such shared patterns, the unidimensional model will, by definition, show a poor fit to the data.
- Since items share certain characteristics (e.g., common response scale, difficulty), it is likely that the shared patterns of misfit/residuals emerge.

An empirical study

Instruments and design

- Three self-report inventories: Height Inventory, Weight Inventory, Age Inventory.
- Sample items: I am taller than men of my age. I often need a stool to reach something other people would reach normally.
- Two response scales: Likert (agree–disagree), item-specific (expanded item format).
- Two types of factor analysis: continuous (MLR) vs. ordinal (WLSMV).
- The participants also reported their height, weight, and age.
- For simplicity, we will focus on the Height Inventory with the traditional Likert response scale and linear factor analysis (that treats items as continuous, interval variables).

Research sample

- N = 12,158 (49 % male).
- Height ranged from 143 to 215 cm (M = 174.8, SD = 10.1).
- Age ranged from 18 to 85 years (M = 36.5, SD = 13.8).
- Weight ranged from 40 to 172 kg (M = 81.0, SD = 19.6).
- BMI ranged from 14.2 to 59.1 kg/m² (M = 26.4, SD = 5.67).

Instruments and design

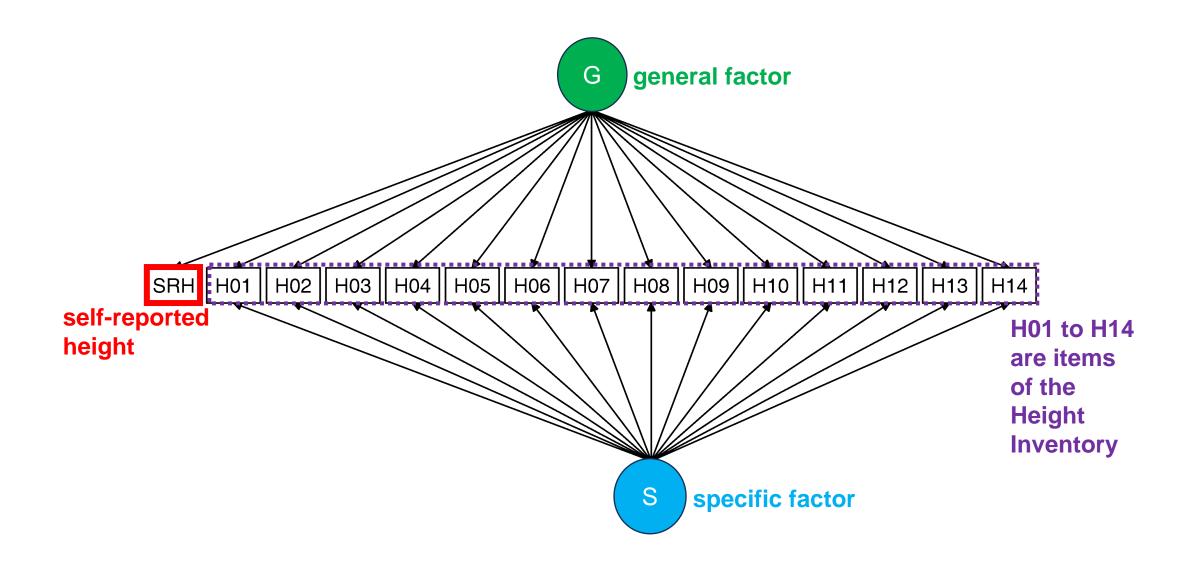
- Three self-report inventories: Height Inventory, Weight Inventory, Age Inventory.
- Sample items: I am taller than men of my age. I often need a stool to reach something other people would reach normally.
- Two response scales: Likert (agree–disagree), item-specific (expanded item format).
- Two types of factor analysis: continuous (MLR) vs. ordinal (WLSMV).
- The participants also reported their height, weight, and age.
- For simplicity, we will focus on the Height Inventory with the traditional Likert response scale and linear factor analysis (that treats items as continuous, interval variables).

Aims and hypotheses

- Demonstrate that a misspecified response function is a sufficient cause of spurious multidimensionality.
- We expected:
- 1. More misfitting items to have stronger loadings on the specific factor.
- 2. The specific factor to still contain construct-relevant variance, that is, to be related to the general factor, but in a non-linear fashion.
- 3. The shape of their relationship to mirror the shared pattern of item misfit.

Instruments and design

- Three self-report inventories: Height Inventory, Weight Inventory, Age Inventory.
- Sample items: I am taller than men of my age. I often need a stool to reach something other people would reach normally.
- Two response scales: Likert (agree–disagree), item-specific (expanded item format).
- Two types of factor analysis: continuous (MLR) vs. ordinal (WLSMV).
- The participants also reported their height, weight, and age.
- For simplicity, we will focus on the Height Inventory with the traditional Likert response scale and linear factor analysis (that treats items as continuous, interval variables).



Model fit

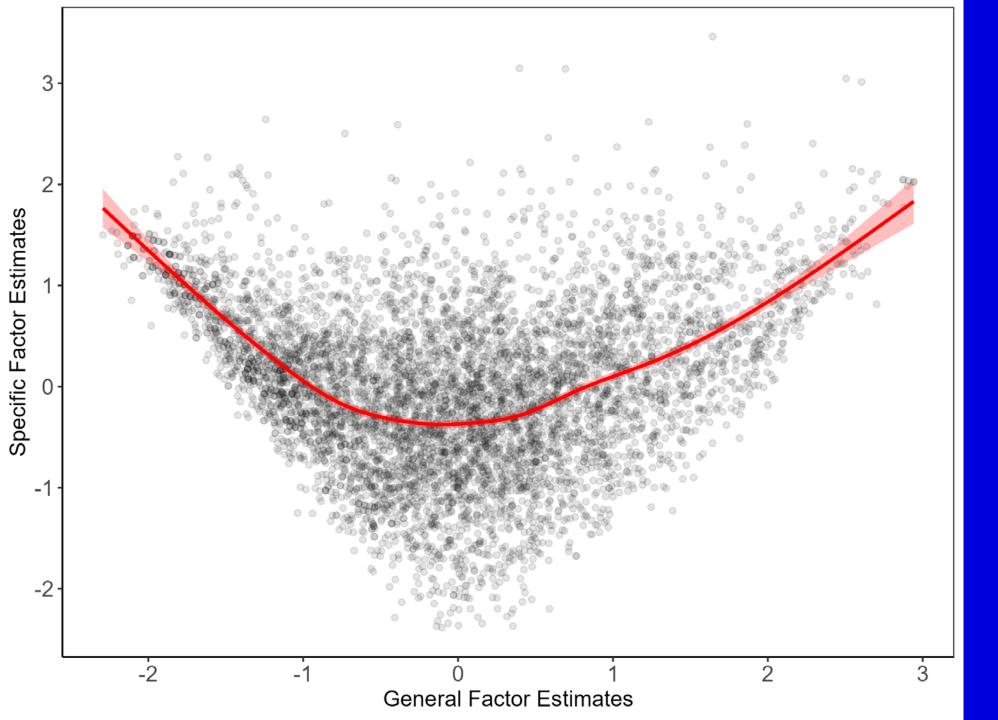
- The unidimensional model showed a mediocre fit to the data: χ²(180) = 5280.9 (unscaled 6623.1), *p* < 0.001, CFI = 0.917, TLI = 0.903, RMSEA = 0.077 (90% CI [0.075, 0.079]), SRMR = 0.049.
- The bifactor i-1 model showed an excellent fit to the data: $\chi^2(180) = 672.5$, (unscaled = 736,4) p < 0.001, CFI = 0.992, TLI = 0.989, RMSEA = 0.025 (90% CI [0.024, 0.027]), SRMR = 0.012.
- The difference in fit was statistically significant: $\chi^2(180) = 5085,6, p < 0.001.$

Item fit

- First, we have computed factor scores estimates for reach respondent.
- Second, we computed model-predicted item scores for each respondent and item.
- Then we computed "empirical" item scores using spline regression.
- The correlation between the model-predicted item scores and empirical item scores was used as a measure of item fit.
- As expected, the items with poor fit tended to have stronger loadings on the secondary factor.
- The correlation between item fit and the loadings on the specific factor was strong: Spearman's ρ = -.70, 95% CI [-.86, -.41], p < .001.

Item fit

- First, we have computed factor scores estimates for reach respondent.
- Second, we computed model-predicted item scores for each respondent and item.
- Then we computed "empirical" item scores using spline regression.
- The correlation between the model-predicted item scores and empirical item scores was used as a measure of item fit.
- As expected, the items with poor fit tended to have stronger loadings on the secondary factor.
- The correlation between item fit and the loadings on the specific factor was strong: Spearman's ρ = -.70, 95% CI [-.86, -.41], ρ < .001.

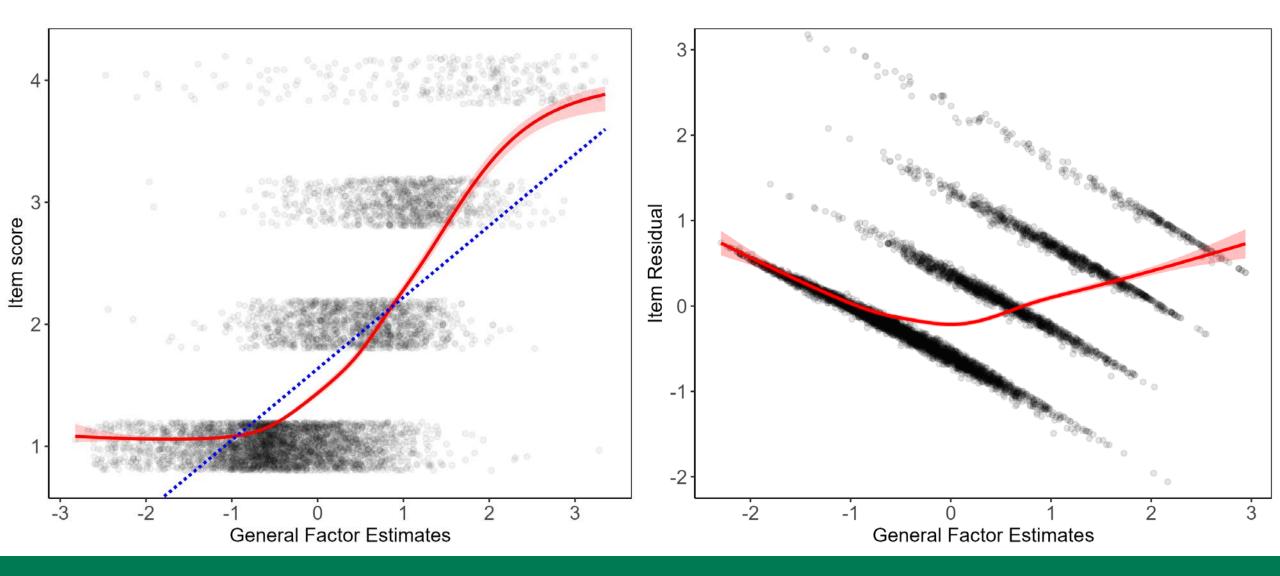


Cubic splines regression: $R^2 = 0.28$

Linear regression with a quadratic term: $R^2 = 0.27$

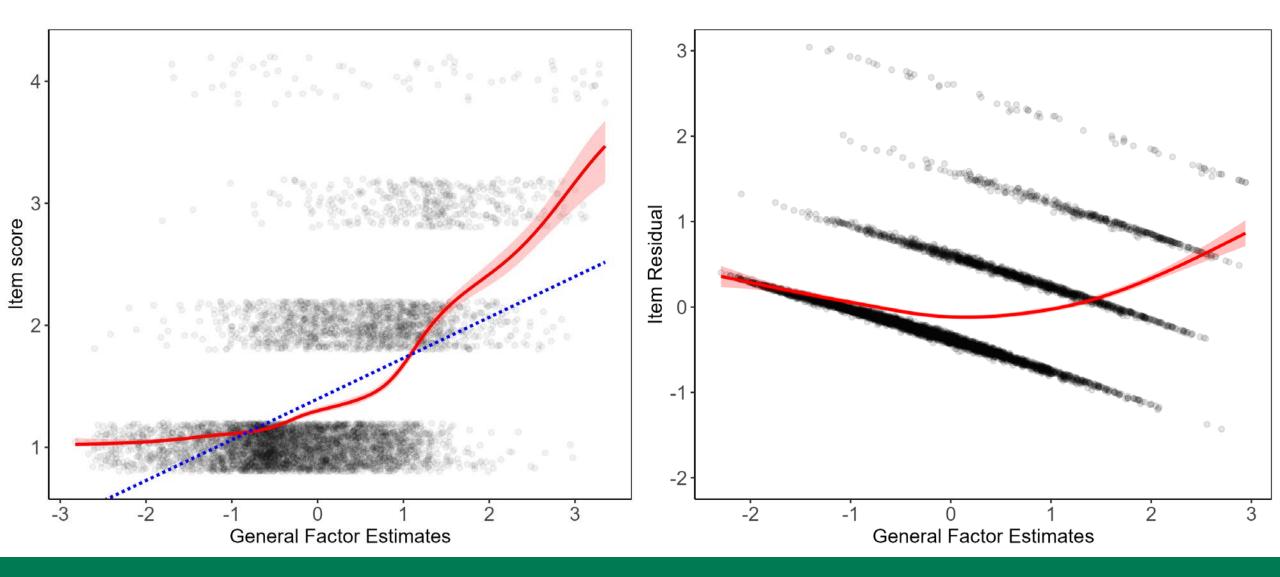
Squared Pearson correlation: $r^2 < 0.01$

I am used to hearing comments about how tall I am.



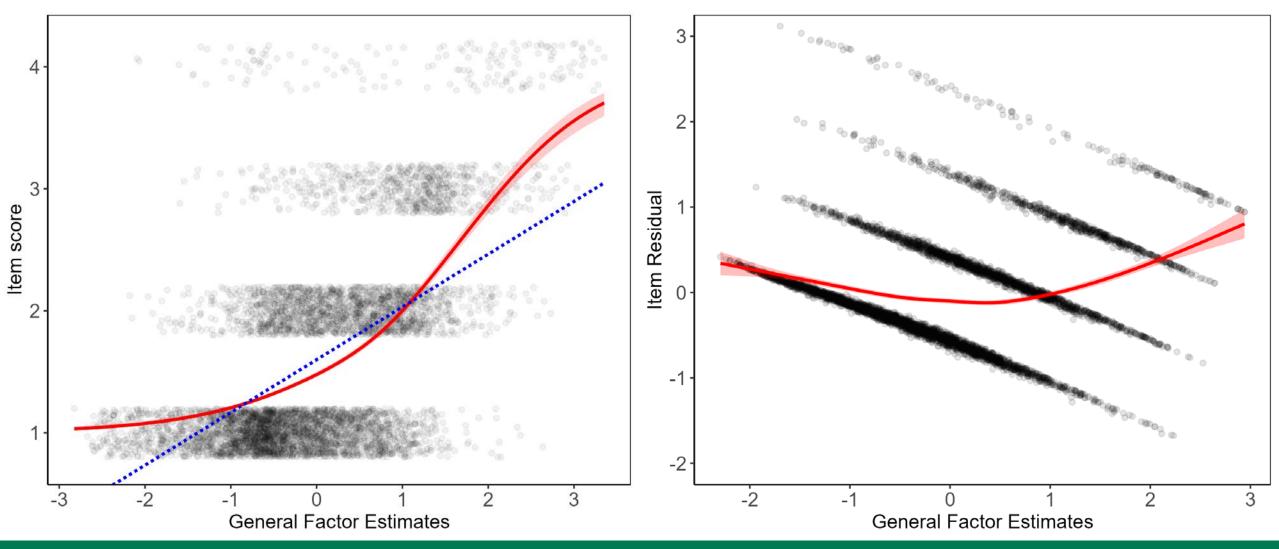
#Psychoco 2024

Ordinary beds are too short for me.



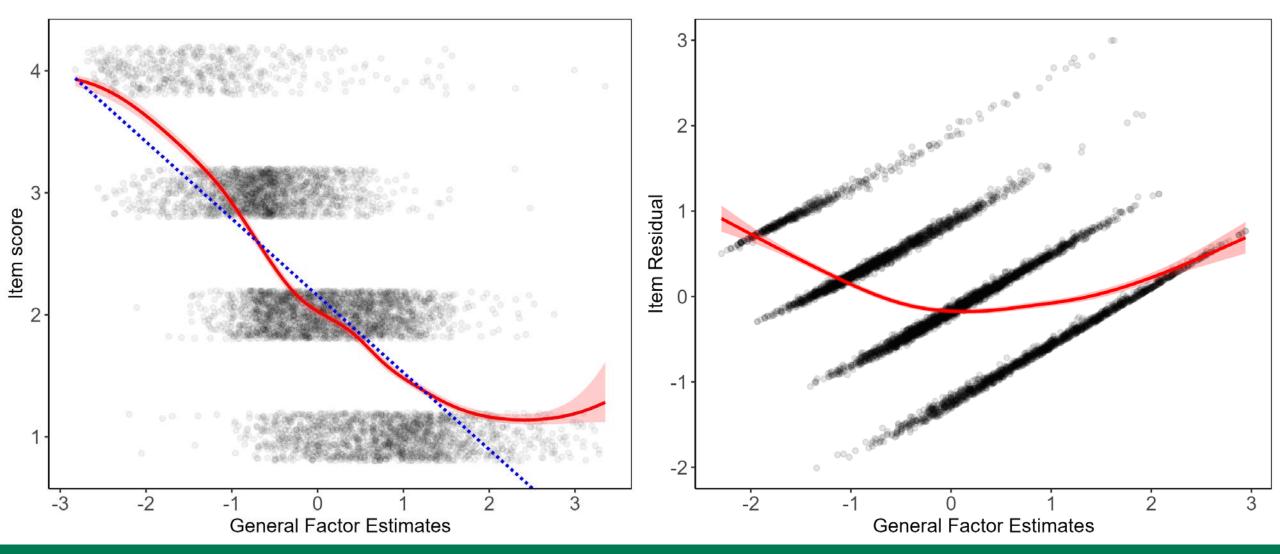
#Psychoco 2024

I often need to be careful to avoid bumping my head against a doorjamb or a low ceiling.



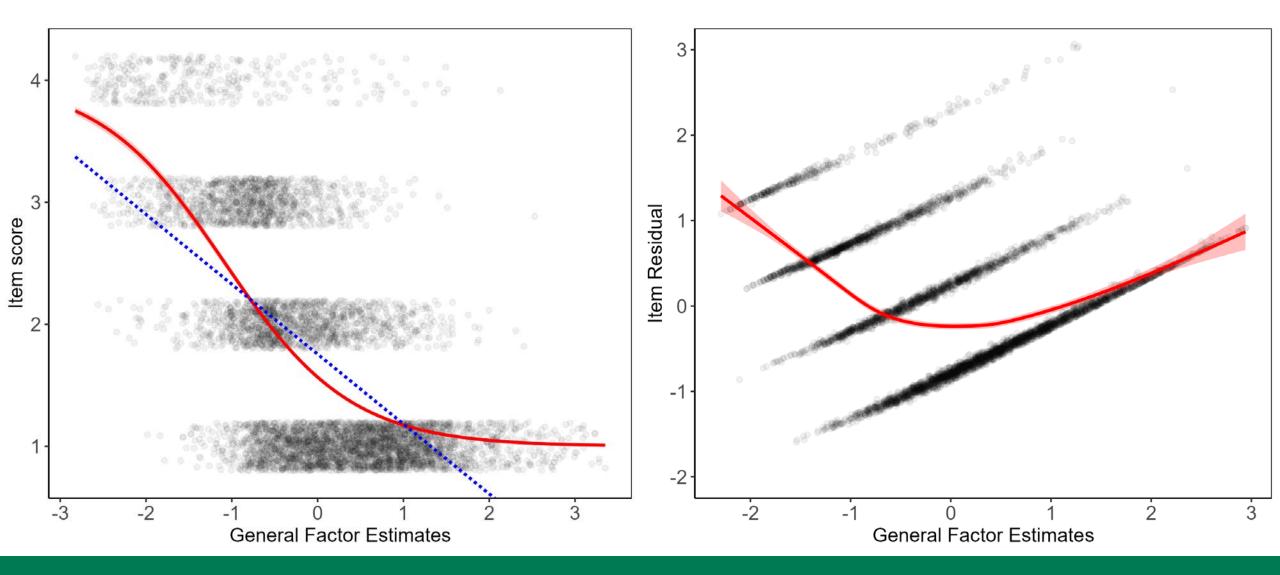
#Psychoco 2024

I often need a stool to reach something other people would reach without it. (reversed)



#Psychoco 2024

I could play a dwarf. (reversed)



#Psychoco 2024

Conclusions

- The results supported the hypothesis that a misspecified relationship between a latent variable and its indicator (item response) results in a shared pattern of misfit/residuals between items,
- In turn, this shared pattern results in a worse fit of a unidimensional model and the "emergence" of secondary factor(s).
- We know that these factors are "spurious" because they are nonlinearly related to the general factor and thus still contain construct-relevant variance.

Conclusions

- The results supported the hypothesis that a misspecified relationship between a latent variable and its indicator (item response) results in a shared pattern of misfit/residuals between items,
- In turn, this shared pattern results in a worse fit of a unidimensional model and the "emergence" of secondary factor(s).
- We know that these factors are "spurious" because they are nonlinearly related to the general factor and thus still contain construct-relevant variance.

Main takeaway

- In order to interpret the secondary factors as substantive, or content factors, it is first necessary to verify that the relationship between the latent variable and the items is not misspecified.
- Otherwise. there is a risk that the secondary factors are merely a statistical artifact.

What to do about it

- Thus, in the practical application of factor analysis, we recommend checking the following things to avoid interpreting spurious factors as substantive factors:
 - 1. Is the relationship between the latent variable and the item specified correctly?
 - 2. Do the items with the largest loadings on the secondary factor(s) share the same (or mirror-reversed) pattern of misfit/residuals (when plotted against the general factor)?
 - **3**. Is the primary factor strongly, but non-linearly related to the secondary factor(s). And if so, does the shape of the relationship mirror the pattern of residuals (from the previous step).

Funding

 This research was funded by the Grant Agency of the Czech Republic (project GA23-06924S)

Literature

- Bernstein, I. H., & Teng, G. (1989). Factoring items and factoring scales are different: Spurious evidence for multidimensionality due to item categorization. *Psychological Bulletin*, 105(3), 467–477. https://doi.org/10.1037/0033-2909.105.3.467
- Carroll, J. B. (1945). The effect of difficulty and chance success on correlations between items or between tests. *Psychometrika*, 10(1), 1–19. <u>https://doi.org/10.1007/bf02289789</u>
- Cronbach, L. J. (1942). Studies of acquiescence as a factor in the true-false test. *Journal of Educational Psychology*, 33(6), 401–415. <u>https://doi.org/10.1177/001316444600600405</u>
- Cronbach, L. J. (1950). Further evidence on response sets and test design. *Educational and Psychological Measurement*, 10(1), 3–31. <u>https://doi.org/10.1177/001316445001000101</u>
- Ferguson, G. A. (1941). The factorial interpretation of test difficulty. *Psychometrika*, 6(5), 323–329.
 https://doi.org/10.1007/bf02288588
- Gnambs, T., & Schroeders, U. (2020). Cognitive abilities explain wording effects in the Rosenberg Self-Esteem Scale. Assessment, 2, 404–418. <u>https://doi.org/10.1177/1073191117746503</u>

Literature

- Kam, C. C., & Meyer, J. P. (2022). Testing the nonlinearity assumption underlying the use of reverse-keyed items: A logical response perspective. *Assessment*, 0(0), 1–21. <u>https://doi.org/10.1177/10731911221106775</u>
- Kam, C. C., Meyer, J. P., & Sun, S. (2021). Why do people agree with noth regular and reversed Items? A logical response perspective. *Assessment*, 28(4), 1110–1124. <u>https://doi.org/10.1177/10731911211001931</u>
- Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: a literature review. *Quality & Quantity*, 47(4), 2025–2047. <u>https://doi.org/10.1007/s11135-011-9640-9</u>
- Marsh, H. W. (1996). Positive and negative global self-esteem: A substantively meaningful distinction or artifactors. *Journal of personality and social psychology*, 70(4), 810–819. <u>https://doi.org/10.1037//0022-3514.70.4.810</u>
- Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson`, P. R. Shaver, & L. S.
 Wrightsman (Eds.), *Measures of Personality and Social Psychological Attitudes* (pp. 17–59). Academic Press.
- Rauch, W. A., Schweizer, K., & Moosbrugger, H. (2007). Method effects due to social desirability as a parsimonious explanation of the deviation from unidimensionality in LOT-R scores. *Personality and Individual Differences*, 42(8), 1597–1607. <u>https://doi.org/10.1016/j.paid.2006.10.035</u>