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Abstract
Microbial communities in the active layer play a crucial role in the biogeochemical cycles of Antarctic pristine ecosystems. 
Here, 16S rRNA gene sequencing was used to investigate bacterial communities in active layer of five different geological 
sites related to the compositional variation of the geological bedrock, including Neogene volcanic or Cretaceous rocks and or 
marine sediments areas of distinct elevation. Local variations in the thickness of the active layer (50–80 cm) were observed 
on the Ulu Peninsula, James Ross Island, and the southwest coast of Vega Island, Antarctica during sampling in 2019. 
High bacterial diversity was detected in all sampling sites. Significant site effects on bacterial composition with increased 
Chloroflexota and decreased Flavobacteriaceae were only observed between the highest elevation Johnson Mesa 2 plateau 
and coastal areas. The overall effect of the depth was reflected by the increased of e.g., Cyanobacteria, Propionibacterium, 
Staphylococcus in the upper surface and Chloroflexota, Acidobacteriota, Actinomycetota at depths below 30 cm. The huge 
number of unassigned bacteria indicated a potential source of new bacterial species and their ecological role in this extreme 
environment. For the first time, we showed that the effect of depth on bacterial composition was more significant than the 
effect of geological bedrock from these previously unexplored regions.
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Introduction

Permafrost, a key component of the earth's cryosphere, 
covers approximately 11% of the world's land area and is 
typically associated with ground ice (Xue et al. 2019; Obu 
2021). The surface layer above permafrost, known as the 
active layer, thaws seasonally and is considered an important 

component of terrestrial ecosystems. Active layer monitor-
ing began on a larger scale in the 1990s and more than 100 
sites in the Arctic, Antarctica, and several mid-latitude 
mountain ranges are currently monitored (Hinzman et al. 
2003). It plays an important role in cold regions because 
most ecological, hydrological, biogeochemical and pedo-
genic (soil-forming) activity takes place within it (Brown 
et al. 2000). Research on the active layer in Antarctica began 
in the 1960s in the McMurdo Dry Valleys on Victoria Land, 
where the largest ice-free areas are located; in other parts of 
Antarctica, major monitoring of the active layer expanded 
around the International Polar Year 2007–2009 (Vieira et al. 
2010; Hrbáček et al. 2017).

The thickness of the active layer or the existence of per-
mafrost serve as key indicators to describe the terrestrial 
environment in Antarctica. Due to active layer susceptibil-
ity to the effects of climate change, thermal conditions and 
the thickness of the active layer have been closely moni-
tored in recent decades (Vieira et al. 2010; Bockheim et al. 
2013; Hrbáček et al. 2021). The depth of the active layer is 
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spatially variable and depends on location and climate zone, 
for example, coastal zone sites have a deeper active layer 
(~ 100 cm), while inland mountain sites have only about 
5–10 cm (Adlam et al. 2010; Vieira et al. 2010; Bockheim 
et al. 2013; Hrbáček et al. 2021).

The extensive deglaciated areas of the Ulu Peninsula, 
James Ross Island and nearby Vega Island offer the suitable 
conditions for active layer research. In this unique locality, 
microbiological research has focused mainly on the descrip-
tion of many novel species comprising phyla Pseudomon-
adota and Bacteroidota from abiotic sources in last years 
(Kosina et al. 2016; Sedláček et al. 2017, 2019a, b, 2020, 
2021; Švec et al. 2017, 2022; Pantůček et al. 2018; Králová 
et al. 2019, 2021; Holochová et al. 2020). Only one bacterial 
composition study was performed between two different soil 
profiles (60 cm soil profile from Brandy Bay location and 
90 cm from Santa Martha Cove) (Meier et al. 2019).

In this study, we have provided a comprehensive view of 
the variability of microbial composition in soil samples col-
lected from different depths of the active layer from five dif-
ferent geological regions of the Ulu Peninsula, James Ross 
Island, and Vega Island in Antarctica. The Cape Lachman 
site, located at the northern end of the Ulu Peninsula, is 
geologically characterised by the hyaloclastic breccias of the 
Cape Lachman Formation, which were formed by volcanic 
activity during the Miocene (Smellie et al. 2008; Mlčoch 
et al. 2020). The Johnson Mesa area consists of weathered 
hyaloclastic breccias and subaerial basalts of the Pliocene 
Johnson Mesa Formation (Smellie et al. 2008; Mlčoch et al. 
2020). One sampling location on Johnson Mesa was on the 

plateau which is located at an elevation of 340 m above 
sea level, and another was at a lower altitude. The Berry 
Hill slope area, the foot of the slope below the Berry Hill 
volcanic mesa, was formed beneath deposits of volcanic 
material. The geology underlying the Berry Hill slopes pro-
file consists of glacial to marine sedimentary rocks of the 
Miocene Mendel Formation (Nývlt et al. 2011). The last 
sampling area was Camp Lamb in the south-western part of 
Vega Island, which is characterised by marine sedimentary 
rocks of the Snow Hill Island Formation of Late Cretaceous 
age and volcanic rocks belonging to the James Ross Volcanic 
Group of Late Miocene age (Smellie et al. 2008; Roberts 
et al. 2014).

Materials and methods

Soil samples collected from the James Ross 
and Vega Islands, Antarctica

Thirty-one active soil samples were collected from five dif-
ferent locations on the Ulu Peninsula, James Ross Island—
Cape Lachman (n = 6), Berry Hill slopes (n = 5), Johnson 
Mesa 1 (n = 8) and 2 (n = 5), and the southwest coast of 
Vega Island—Cape Lamb (n = 7), Antarctica, during the 
austral summer of 2019 (Fig. 1A). The active layer thick-
ness was measured using a probing rod with a diameter of 
10 mm. The thickness of the active layer in 2019 varied 
between sites. Cape Lachman (CL), Berry Hill slopes (BH) 
and Johnson Mesa 2 (JM2) all had active layer thicknesses 

B

C

Cape Lachman (65 asl.)
W57.784219  S63.782984
sampling - 0,10,20,30,40,50 cm

Johnson Mesa 1 (310 asl.)
towards Bibby Hill
W57.9378664 S63.8212514
sampling - 0,10,20,40,50,60,70,80 cm

Berry Hill slopes (56 asl.)
W57.838998  S63.802765
sampling - 0,20,30,40,50 cm

Cape Lamb (10 asl.)
W57.6089586 S63.8617031
sampling - 0,10,20,30,40,50,60 cm

Johnson Mesa 2 (340 asl.)
loca on near meteo sta on
W57.9356350 S63.8230311
sampling - 0,20,30,40,50 cm

A

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS

58''0'0''W 57''50'0''W 57''40'0''W 57''30'0''W

Fig. 1  Locality map and the example of a sampling points. A Map to 
show positions of the active layer sampling sites on the James Ross 
and Vega Islands, Antarctica. Five to eight samples were taken from 
different depths at various geological sites. B All five profiles from 

the various geological sites on the Ulu Peninsula, James Ross Island 
and Vega Island, Antarctica were dug until the thaw depth. C All 
active layer samples were then extracted using a small metal shovel 
inserted horizontally at the desired depth in the exposed pit



297Polar Biology (2024) 47:295–303 

of 50 cm, while Vega Island (VI) had 60 cm and, in con-
trast, Johnson Mesa 1 (JM1) had up to 80 cm. Profiles of all 
five geological sites were dug until the thaw depth at each 
location (Fig. 1B) and all active layer samples were then 
extracted using a small metal shovel inserted horizontally at 
the desired depth interval in the exposed pit (Fig. 1C). For 
DNA isolation, a sterile 2 mL tube was filled with approxi-
mately 3 g of soil samples.

DNA isolation from soil samples, preparation of 16S 
rRNA gene library and sequencing

A total of 31 soil samples were collected from all five geo-
logical sites and different depth intervals. Upon arrival at 
the laboratory, the samples were frozen at − 20 °C until 
molecular analyses were performed. The whole ~ 3 g pro-
portion of the sample was homogenized by mixing thor-
oughly. A 0.2 g soil sample was used for DNA isolation, 
ensuring that the extracted fraction came from all parts and 
was representative of the original sample. DNA isolation 
of all 31 Antarctic soil samples was performed using Pure-
Link™ Microbiome DNA Purification Kit (Thermo Fisher 
Scientific, USA) according to the manufacturer's protocol. 
The isolated DNA was used as a template in PCR reaction 
targeting the V4 hypervariable region (515F–806R) of the 
bacterial 16S rRNA gene (16S Metagenomic sequencing 
Library Preparation protocol; Illumina, USA). Briefly, the 
Q5® High-Fidelity 2X Master Mix PCR reactions (New 
England BioLabs, USA) were carried out in a total volume 
of 30 μL as follows: 98 °C (30 s), 98 °C (10 s), 55 °C (15 s), 
72 °C (25 s), 30 cycles; and 72 °C (2 min). The list of primer 
pairs is in Table S1. PCR clean-up was performed with 
SPRIselect beads (Beckman Coulter Genomics, USA). Con-
centration was measured with Quant-iT dsDNA Assay Kit, 
High Sensitivity (Thermo Fisher Scientific, USA). Based on 
the concentration values, samples with different inner tags 
were equimolarly pooled and used as a template for a second 
PCR with Nextera XT indexes (Illumina, USA). Next, pools 
containing different indexes were quantified using the Kapa 
Library Quantification Kit Illumina Platforms (Roche, USA) 
and equimolarly pooled. The prepared library was measured 
with a D1000 Screen tape (Agilent Technologies, USA) and 
with Kapa Library Quantification Kit Illumina Platforms 
(Roche, USA). The library was diluted to a final concentra-
tion of 8 pM, and 20% of PhiX DNA (Illumina, USA) was 
added. Sequencing was performed with the MiSeq reagent 
kit V2 using a MiSeq 2000 instrument according to the 
manufacturer's instructions (Illumina, USA).

Bioinformatics and statistical analysis

The raw sequence reads were pre-processed by the follow-
ing bioinformatic pipeline. The first step of the pipeline was 

demultiplexing of reads in sequencing pools into individual 
DNA samples. The next step in the pipeline was trimming 
of low-quality end of each read. Both demultiplexing and 
length filtering were performed by an in-house tool written 
in Python 3. Forward and reverse reads were denoised using 
the DADA2 pipeline version 1.26 for R package (Callahan 
et al. 2016). Following denoising, the forward and reverse 
reads were joined using the fastq-join read joining utility 
(Aronesty 2013). Finally, chimeric sequences were removed 
from the joined reads using the removeBimera function of 
the DADA2 R package. Taxonomy was determined using 
the USEARCH-consensus algorithm from the microbiome 
analysis toolkit QIIME version 1.9.1 (Caporaso et al. 2010; 
Edgar 2010). For each input sequence, three closest organ-
isms were found in the Silva version 123 reference database 
(Quast et al. 2013). Taxonomic names of bacterial phyla 
obtained from Silva database were corrected according to 
the publication by Oren and Garrity (2021). Their taxono-
mies were combined into the final taxonomic assignment 
using the least common ancestor (LCA) algorithm. Statisti-
cal analysis of bacterial compositions was performed at the 
phylum and genus level. The Shannon diversity index (Ortiz-
Burgos 2016) was chosen to estimate the bacterial diversity 
and uniformity of the microbial community. A Principal 
Coordinates Analysis (PCoA) plot of the Bray–Curtis dis-
tance matrix using the EMPeror visualization tool was used 
to show differences of bacterial communities between differ-
ent locations and depths (Vazquez-Baeza et al. 2013). Non-
parametric Mann–Whitney U test with Benjamini–Hochberg 
(BH) adjustment for multiple testing was used to test the 
differences between soil samples. Results were considered 
significant at p < 0.05.

Results

A total of 31 Antarctic active layer samples were collected 
from five different geological locations on the Ulu Penin-
sula, James Ross Island, and the southwest coast of Vega 
Island, Antarctica (Fig. 1). Information on the number of 
reads per sample after quality filtering and chimera removal 
is in Table S2.

Bacterial diversity in different geological localities 
and depths of active layer

A high level of bacterial community diversity was observed 
at all five sampling sites. The Shannon diversity index, 
which is used to estimate the evenness and richness of 
microbial populations, averaged approximately 8.3 with no 
significant differences between sites (Table S2). Lower mean 
values 7.7 and 7.9 were found in sites CL and VI compared 
to the most diverse JM2 area (mean Shannon index of 9.6). 
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At sites JM1, JM2 and BH, there was a tendency for diver-
sity to increase with depth, and in the deepest layers of these 
localities (near the permafrost), Shannon index values were 
the highest and exceeded 10.

Bacterial compositional changes according 
to the geological location

At the phylum level, Actinomycetota, Pseudomonadota, 
Bacillota, Bacteroidota, and Chloroflexota were the most 
abundant in all geological sites (Fig. 2; Table S3). Statis-
tically significant differences were described in the JM2 
area, where a higher abundance of Chloroflexota was found 
compared to CL (p = 0.04) and VI (p = 0.02). An increased 
abundance of Flavobacteriaceae was detected in the coastal 
Cretaceous VI area compared to area JM2 (p = 0.03).

At the genus level, Propionibacterium, Corynebacterium 
(both, with the highest level detected at the CL locality), and 
Staphylococcus dominated at all sites (Fig. 3A; Table S3). 
From the results previously described using the Shannon 
index, it was already evident that bacterial richness would 
also be very high. Many different genera were detected at 
all sampling sites, with a total abundance of approximately 
1–2%, except for the two or so dominant genera, which only 
accounted for approximately ten percent of the total abun-
dance. Also, many genera corresponding to uncultivated and 
unassigned taxa were found.

Relationship between the bacterial composition 
and soil depth

According to the PCoA plot, two main clusters of samples 
were identified (Fig. 3B). The first cluster mainly included 
samples from the deepest layers of JM1 and JM2 along 
with some samples from other sites also from deeper layers 
(30 cm or deeper). The second cluster grouped samples from 
the uppermost layers of JM1 and JM2 together with a vari-
ety of primarily uppermost samples from other sites (BH, 
VI and CL). The bacterial profile of the last three deepest 
layers of JM2 was like that of the last two lower layers of 
JM1 (Fig. 3A).

The results from the PCoA plot showed the potential 
effect of the soil depth on the microbial communities. Over-
all, at all sites, the abundance of Chloroflexota increased 
significantly at 30–40 cm depth (p = 0.04). Acidobacte-
riota abundance gradually increased from the active layer 
surface, and the highest values were found at a depth of 
approximately 40 cm compared to the upper (p = 0.02) and 
deeper layers (p = 0.02). Cyanobacteria were increased in 
the 0–10 cm compared to 20–50 cm (p = 0.03).

At the genus level, Propionibacterium (p = 0.003), 
Staphylococcus (p = 0.01), Corynebacterium (p = 0.003), 
Streptococcus (p = 0.004), Enterobacteriaceae unassigned 
(p = 0.02) were significantly increased in the upper 0–30 cm 
layer compared to the lower parts. While Acidimicrobiales 

Fig. 2  Localization and metagenomic analysis (at the phylum level) 
of 31 soil samples isolated from different depths of active layer from 
five various geological sites on the Ulu Peninsula, James Ross Island 

and Vega Island, Antarctica. *Other—bacteria with an average value 
in all samples below 1%
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Fig. 3  Bacterial communities at different depths of the active layer. A 
Bacterial abundance at the genus level. *The bacterial profile of the 
last three deepest layers of JM2 was like the last two lower layers of 
JM1. **Other—the 30 most abundant bacterial genera are visualized, 

for other see Table S3. B A Principal Coordinates Analysis (PCoA) 
plot of the Bray–Curtis distance matrix using the differences of bac-
terial communities between different locations and depths of active 
layer and clustering
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uncultured (p = 0.04), Chloroflexota KD4-96 uncultured 
(p = 0.04), Thermomicrobiota JG30-KF-CM45 (p = 0.02), 
Chloroflexota Gitt-GS-136 unassigned (p = 0.02), Gem-
matimonadaceae uncultured (p = 0.02), Actinomycetota 
MB-A2-108 uncultured (p = 0.02), and Thermophilia-Soli-
rubrobacterales 480-2 uncultured (p = 0.02) abundances 
were increased in the layers below 30 cm compared to upper 
layers.

Discussion

The Ulu Peninsula, located in the northern part of James 
Ross Island, is the most extensive deglaciated area in the 
Antarctic Peninsula (Hrbáček et al. 2017). While deglacia-
tion of the Ulu Peninsula, James Ross Island, began as early 
as ~ 13 ka bp (Nývlt et al. 2014), the area on the Vega Island, 
where another sampling site was located, deglaciate between 
8 and 6 ka bp (Píšková et al. 2019). Since 2010, the number 
of studies of active layer dynamics in the Antarctic region 
has increased. Most of these studies have focused on inves-
tigating the thermal conditions of the active layer through 
drilling in soil or sediments, as well as its relation to climate 
(Vieira et al. 2010; Bockheim et al. 2013; Hrbáček et al. 
2021).

The active layer of soil above the permafrost thaws during 
the austral summer months (Amesbury et al. 2017). This first 
study which focuses on the bacterial composition of active 
layer from soil samples collected in five geologically dis-
tinct locations on the Ulu Peninsula and the southwest coast 
of Vega Island can help to understand how the active layer 
will respond to climate change, and what the implications of 
those changes might be for the broader ecosystem. Microbial 
diversity in all study areas was very high compared to previ-
ously studied sites at Brandy Bay and Santa Marta Cove with 
Shannon index approximately 4.2 (Meier et al. 2019). The 
highest diversity was described in the deepest layers of areas 
Johnson Mesa 1, Johnson Mesa 2, and Berry Hill slopes. 
Some studies suggest that dead intact cells and extracellular 
genomic DNA may increase the diversity of soil microorgan-
isms (Carini et al. 2016). In this deepest part of the active 
layer above the permafrost, seasonal thawing probably leads 
to the accumulation of various bacteria or DNA on this sur-
face. The higher diversity values from the deepest layers may 
be related to the fact that this is probably a historically active 
layer, as in the previous years, 2006–2015, the active layer 
was approximately 5–15 cm shallower (Hrbáček et al. 2017).

Differences in the active layer thickness were found 
between the different geological sites. The site in Berry 
Hill slopes area has active layer thickness around 90 cm 
(Hrbáček et al. 2017), but excavation of the soil profile was 
problematic as it could only be dug to a maximum depth of 
50 cm due to subsequent water flooding. Johnson Mesa 1 

is located on the north-aspect sunny slope and consists of 
volcanic material that effectively traps heat. This explains 
that the deepest layer was sampled in this site. The Cape 
Lachman area is also composed of volcanic material, but the 
sampling site is south-facing and was probably cooler com-
pared to Johnson Mesa 1 site. Johnson Mesa 2 is located on 
a plateau; it is the highest elevation area and therefore likely 
has a thinner active layer than Johnson Mesa 1 site. The 
Cretaceous coastal area of Vega Island, like the coastal area 
of Cape Lachman, has a similar thickness of the active layer.

Except for Johnson Mesa 2, which differed from Cape 
Lachman and Vega Island in having significantly elevated 
Chloroflexota and from Vega Island in having reduced Fla-
vobacteriaceae abundance, no other statistically significant 
differences were described between the areas. The Johnson 
Mesa 2 area localized on the plateau was likely influenced by 
the higher elevation compared to Johnson Mesa 1, localized 
30 m lower. Also, the thickness of active layer was smaller in 
the plateau area and the bacterial composition of the last two 
samples from the 70 to 80 cm of Johnson Mesa 1 was like 
the composition below the 30 cm depth in the higher John-
son Mesa 2 plateau area. Of all the areas studied, Johnson 
Mesa 2 and Vega Island differed the most from each other. 
Cretaceous coastal Vega Island area probably varied from 
the Johnson Mesa 2 mesa plateau area in the salinity and 
chloride concentrations, and this is possibly responsible for 
the increased Flavobacteriaceae in Vega Island, which rep-
resent a group of adapted psychro- and halotolerant bacteria 
(Bajerski and Wagner 2013; Meier et al. 2019).

All active layer soils were dominated by Actinomycetota, 
Pseudomonadota, Bacillota, Bacteroidota, and Chloro-
flexota, which is in accordance with previously published 
results in other Antarctic habitats—different soils (vegetated 
sites, carbon-depleted soils, mineral soils, cryosols), glacier 
forefields and rocks, where these bacterial phyla also pre-
dominated in varying order and abundance (Ganzert et al. 
2011; Bajerski and Wagner 2013; Meier et al. 2019; Gar-
rido-Benavent et al. 2020). The depth of the active layer, as 
opposed to the influence of the geological location, emerged 
as a key factor determining the distribution of individual 
bacteria. Higher abundances of Cyanobacteria, Propioni-
bacterium, Staphylococcus, Corynebacterium, Streptococ-
cus, and Enterobacteriaceae were observed in the higher 
layers, while Chloroflexota, Acidobacteriota, Acidimicrobi-
ales, Thermomicrobiota, Gemmatimonadaceae, Actinomy-
cetota, and “Thermophilia” in the layers below 30 cm. It has 
been previously published that Cyanobacteria dominate the 
surface layers, while the deeper layers are inhabited by pho-
totrophic bacteria from the phyla Chlorobiota and Chloro-
flexota (Jungblut and Vincent 2017). Surprisingly, we found 
a high abundance of mainly human skin-related bacteria, 
such as Propionibacterium, Staphylococcus, Corynebacte-
rium, and Streptococcus in the upper layers. Although these 



301Polar Biology (2024) 47:295–303 

bacteria represent several known contaminants of microbiota 
studies (Salter et al. 2014), our negative sequencing controls 
did not contain these bacteria and the confirmation of the 
finding of many of these genera in the avian microbiome 
(Hird et al. 2015) point to birds as a possible source of soil 
microbiome. Pearce et al. (2009) also described the presence 
of these microorganisms in the air samples over Antarctica. 
Air together with birds could probably represent a significant 
source of these bacteria in the upper parts of the soil active 
layer which can also into the lower layers with the assistance 
of water. Similarly like in our study, Meier et al. (2019) also 
detected higher values in Gemmatimonadaceae in the deeper 
parts of Brandy Bay soil and suggested that there might be a 
connection with the water availability. The huge number of 
uncultured and unassigned bacteria indicated a significant 
source of new bacterial species and their potential, e.g., as a 
promising source of new antimicrobial compounds.

In summary, our findings describe that the active layer 
of the deglaciated areas of the Ulu Peninsula and Vega 
Island contain a huge and diverse bacterial community. 
For the first time, we compared soil samples from different 
depths of active layer from these previously unexplored 
areas and showed that the effect of depth on bacterial com-
position was more significant than the effect of geological 
sites.
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