J 2024

Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers

BLITZ, Samuel Harris, A Rod GOVER a Andrew WALDRON

Základní údaje

Originální název

Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers

Autoři

BLITZ, Samuel Harris (840 Spojené státy, domácí), A Rod GOVER a Andrew WALDRON (garant)

Vydání

Communications in Contemporary Mathematics, World Scientific Publishing Company, 2024, 0219-1997

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Singapur

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Impakt faktor

Impact factor: 1.600 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

DOI

http://dx.doi.org/10.1142/S0219199723500141

UT WoS

001157533200001

Klíčová slova anglicky

Conformal geometry; extrinsic conformal geometry and hypersurface embeddings; conformally compact; Q-curvature; singular Yamabe problem; renormalized volume and anomaly; Willmore energy

Štítky

rivok

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2024 15:39, Mgr. Marie Šípková, DiS.

Anotace

V originále

Over forty years ago, Paneitz, and independently Fradkin and Tseytlin, discovered a fourth-order conformally invariant differential operator, intrinsically defined on a conformal manifold, mapping scalars to scalars. This operator is a special case of the so-termed extrinsic Paneitz operator defined in the case when the conformal manifold is itself a conformally embedded hypersurface. In particular, this encodes the obstruction to smoothly solving the five-dimensional scalar Laplace equation, and suitable higher dimensional analogs, on conformally compact structures with constant scalar curvature. Moreover, the extrinsic Paneitz operator can act on tensors of general type by dint of being defined on tractor bundles. Motivated by a host of applications, we explicitly compute the extrinsic Paneitz operator. We apply this formula to obtain: an extrinsically-coupled Q-curvature for embedded four-manifolds, the anomaly in renormalized volumes for conformally compact five-manifolds with negative constant scalar curvature, Willmore energies for embedded four-manifolds, the local obstruction to smoothly solving the five-dimensional singular Yamabe problem, and new extrinsically-coupled fourth- and sixth-order operators for embedded surfaces and four-manifolds, respectively.
Zobrazeno: 1. 11. 2024 15:00