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ABSTRACT: Caspase-9 is traditionally considered the initiator
caspase of the intrinsic apoptotic pathway. In the past decade,
however, other functions beyond initiation/execution of cell death
have been described including cell type-dependent regulation of
proliferation, differentiation/maturation, mitochondrial, and endo-
somal/lysosomal homeostasis. As previous studies revealed non-
apoptotic functions of caspases in osteogenesis and bone homeo-
stasis, this study was performed to identify proteins and pathways
deregulated by knockout of caspase-9 in mouse MC3T3-E1
osteoblasts. Data-independent acquisition−parallel accumulation
serial fragmentation (diaPASEF) proteomics was used to compare
protein profiles of control and caspase-9 knockout cells. A total of
7669 protein groups were quantified, and 283 upregulated/141
downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly
enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in
MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration,
was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell
migration and, therefore, may be involved in bone remodeling and fracture repair.
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■ INTRODUCTION
Caspases are an evolutionary conserved family of cysteine
proteases with well-defined functions in the regulation of cell
death and inflammation.1,2 More recently, physiological and
disease-related functions of various caspases unrelated to cell
death execution and immune response have also been described.
These include activities in the developing nervous system that
affect synaptic plasticity,3 axon/dendrite pruning,4−6 their
outgrowth7 and branching,8 stem cell activity (self-renewal,
differentiation), and thus the regeneration of various tissues.9−13

Studies using knockout (KO) models and specific inhibitors
have shown that individual caspases are also involved in aging
(oxidative stress, DNA damage)14−16 and tumorigenesis (both
tumor suppressor and promoter functions for individual
caspases have been described).17−19

We and others have described nonapoptotic functions of
caspases in osteogenesis and bone homeostasis as well.
Treatment with the inhibitor of caspase-3 (CASP-3) accelerated
bone loss in ovariectomized mice,20 Bmp4-induced osteoblastic
differentiation of MC3T3-E1 is associated with increased
activity of caspases-2, -3, and -8,21 and pharmacological and
genetic inhibition of caspase-8 inhibited differentiation of these
cells by reducing osteocalcin expression.22,23 Inhibition of other

caspases (-1, -7, and -12) modulated bone and hard tissue
homeostasis, osteoblastic differentiation and expression of
osteogenic and chondrogenic markers in various models in
vivo and in vitro.24−27

Caspase-9 (CASP-9) is classically considered the initiator of
the intrinsic apoptotic cascade. Its activation occurs in the
apoptosome, a protein complex formed in response to the
permeabilization of outer mitochondrial membrane.28,29 Alter-
native CASP-9 activation pathways have also been described.30

Besides its well-described role in apoptosis, other physiological
functions of CASP-9 have been identified, including regulation
of myocyte cell differentiation and proliferation,31 development
of olfactory sensory neurons (axonal projections, synapse
formation, neuronal maturation),32 mitochondrial homeostasis
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and reactive oxygen species production,30 endosomal sorting
and lysosomal biogenesis.33

In this study, the function of CASP-9 in MC3T3-E1
osteoblastic cells was investigated using a proteomic approach.
Deregulated proteins were enriched for those associated with
cell migration/motility. Pharmacological and genetic inhibition
of CASP-9 confirmed the altered cell migration of MC3T3-E1
cells. Abhydrolase domain-containing protein 2 (ABHD2), a
negative regulator of cell migration,34 was identified as a possible
substrate of CASP-9.

■ MATERIAL AND METHODS

Cell Cultures and Generation of Casp9 KO Clones

The MC3T3-E1 osteoblastic cell line was purchased from the
European Collection of Authenticated Cell Culture (c.n.
99072810) and cultured in a humidified incubator (37 °C, 5%
CO2) in MEM Alpha medium (Gibco, USA) with 10% fetal
bovine serum (FBS) (Invitrogen, USA), 100 U/mL penicillin,
and 100 μg/mL streptomycin (Lonza, Basel). The MC3T3-E1
Casp9 KO clones were generated by using the CRISPR/Cas9
approach. Guide RNA (gRNA) sequence CTTCACGCG-
CGACATGATCG was designed by the CRISPOR online
tool35 and cloned into the pSpCas9(BB)-2A-GFP plasmid as
described previously.36 Similarly, oligonucleotides comprising
the GFP-target sequence were used to derive a control plasmid
that was used for the generation of mock-transfected cells.37

MC3T3-E1 cells were transfected using Lipofectamine LTX
(ThermoFisher Scientific, USA), and a pool of GFP-positive
cells was sorted. Next, single-cell colonies were expanded, and
the absence of the CASP-9 protein was verified by
immunoblotting. Short Ins/Del mutations in the target
sequence of genomic DNA isolated from two independent
MC3T3-E1 Casp9 KO clones (A6 and B1) were confirmed by
sequencing. Cell cultures with low passage numbers (<15) were
used in all experiments.
Sample Preparation for Proteomics Analysis

Wt, GFP-control (further labeled as mock), and Casp9 KO
MC3T3-E1 cells were seeded (7 × 105) in the growth medium
in four biological replicates. The cells were collected after 48 h
using a 1 mM EDTA/PBS solution and then lysed in a buffer
containing 8 M urea and 0.5 M TEAB (triethylammonium
bicarbonate) pH 8.5, sonicated (50 W, 30 × 0.1 s, 30 s pause, 30
× 0.1 s), and incubated on ice for 75 min. Lysates were further
centrifuged at 14,000g and 4 °C for 20 min. Protein
concentrations in sample supernatants were determined using
a RC-DC protein assay kit (Bio-Rad, USA).
Protein Digestion

Protein digestion was performed using the Filter-Aided Sample
Preparation (FASP) method. 50 μg of protein per sample was
transferred to the Microcon filter device, 30 kDa cutoff
(Millipore, Germany) containing 200 μL of 8 M urea dissolved
in 0.5 M TEAB, pH 8.5. Samples were centrifuged at 14,000g
and 20 °C for 15 min. 100 μL of 8 M urea and 10 μL of 50 mM
tris (2-carboxyethyl) phosphine were added to the filter, and
samples were reduced on a thermomixer at 600 rpm and 37 °C
for 60 min and centrifuged at 14,000g and 20 °C for 15 min. In
the next step, 100 μL of 8 M urea and 5 μL of 200 mM
methylmethanethiosulfonate were added to the samples. The
samples were alkylated on a thermomixer at 600 rpm and 25 °C
for 1 min, stored without stirring in the dark for 20 min, and
centrifuged at 14,000g and 20 °C for 15 min. Subsequently, 100

μL of 0.5 M TEAB was added to the filter, and samples were
centrifuged at 14,000g and 20 °C for 20 min. The previous step
was repeated once. Enzymatic digestion of proteins was initiated
by addition of 100 μL of 0.5 M TEAB and 1.67 μL of 1 μg/μL
trypsin solution (Promega, USA) dissolved in 50mM acetic acid
(trypsin:cleaved protein ratio was 1:30). The samples were
mixed on a thermomixer at 600 rpm and 37 °C for 1 min and
digested overnight at 37 °C without shaking. The next day,
peptides were eluted by centrifugation at 14,000g and 20 °C for
15 min.
Peptide Desalting

C18 Silica MicroSpin columns (NestGroup Inc., USA) were
used to desalt the peptides prior to mass spectrometry (MS)
analysis. The columns were washed twice with 200 μL of 0.1%
trifluoracetic acid (TFA) in acetonitrile and centrifuged at 100g
and RT for 3 min, which was followed by two washes with 200
μL of 0.1% TFA in water and centrifuged at 300g and RT for 3
min. Columns were left to hydrate for 15 min at RT and
centrifuged at 300g and RT for 3 min. Peptide samples were
added to the columns and centrifuged at 500g and RT for 3 min.
Then, the columns were washed three times with 200 μL of 0.1%
TFA in water and centrifuged at 500g and RT for 3 min. The
elution was performed by the addition of 200 μL of 0.1% TFA in
50% acetonitrile and centrifugation at 500g and RT for 3 min,
which was followed by 200 μL of 0.1% TFA in 80% acetonitrile
and centrifugation under the same conditions and the addition
of 200 μL of 0.1% TFA in 100% acetonitrile and centrifugation
at 500g and RT for 3 min. Eluates were lyophilized in a
SpeedVac and stored at −20 °C.
LC-MS/MS Identification of Peptides in DIA Mode

LC-MS/MS analyses of all peptides were done using nanoElute
system (Bruker, USA) connected to a timsTOF Pro
spectrometer (Bruker, USA). One column (no trapping column;
separation column: Aurora C18, 75 μm ID, 250 mm long, 1.6
μm particles; Ion Opticks, Australia) mode was used on a
nanoElute system with default equilibration and sample loading
conditions (separation column equilibration: 4 column volumes
at 800 bar; sample loading at 800 bar using 2× pick up volume +
2 μL). Concentrated peptides were eluted by a 120 min linear
gradient program (flow rate 300 nL/min, 3−30% of mobile
phase B; mobile phase A, 0.1% FA in water; mobile phase B,
0.1% FA in acetonitrile) followed by a system wash step at 80%
mobile phase B. The analytical column was placed inside the
Column Toaster (40 °C; Bruker, USA) and its emitter side was
installed into CaptiveSpray ion source (Bruker, USA).
MSn data were acquired using the data-independent

acquisition−parallel accumulation serial fragmentation (diaPA-
SEF) approach with a base methodm/z range of 100−1700 and
1/k0 range of 0.6−1.6 V × s × cm−2. The Supplementary Data 1
file defines the m/z 400−1100 precursor range with equal
windows size of 26 Th (including 1 Th overlaps) using two steps
each PASEF scan and a cycle time of 100 ms locked to 100%
duty cycle.
Processing of LC-MS/MS Data

Quantitative analysis of the LC-MS/MS DIA data was
performed in Spectronaut 15.1 (Biognosys, Switzerland)
software using the directDIA approach against theMus musculus
UniProt/SwissProt database (2021_03, 17,519 sequences,
downloaded on 7/29/2021). Precursor q-value cutoff and
experiment protein q-value cutoff were set to 0.01. Peptides
identified with q-value < 0.01 in at least 4 of 16 analyses were
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included (q-value percentile 0.25 setting). Fixed modifications
were set to Methylthio (C), and variable modifications were set
to Acetyl (Protein N-term) and Oxidation (M). Other
parameters were set as default. Differential abundance testing
was performed using Student’s t test in Spectronaut 15.1;
proteins with absolute log2 fold change (|log2FC|) > 0.58 and
with q-value < 0.05 were considered differentially abundant
between the sample groups. An ANOVA test and the
visualization of ANOVA significant proteins in a heatmap
were performed using Perseus software38 version 2.0.11.0.
Gene Set Enrichment Analysis

GSEA analysis was performed using the WEB-based GEne SeT
AnaLysis Toolkit (WebGestalt).39,40 This analysis included all
identified proteins sorted by ranking metrics computed as
negative log2 of the q-value with the sign of the log2-fold change
for each comparison. The organism of interest was set to Mus
musculus, and the method of interest to GSEA. Analysis was
performed against the Gene Ontology Biological Process (GO
BP) database with minimum number of genes for a category set
to 3 and with FDR significance level 0.05. The results were
visualized in R Statistical Software version 4.3.1 using the
ggplot2 package41 version 3.4.4. The Venn diagram was created
using the Venny 2.1 tool.42

Enrichment Analysis of Molecular Pathways
Sets of genes encoding proteins that were either statistically (q-
value < 0.05) significantly upregulated (log2FC > 0.58) or
downregulated (log2FC < −0.58) in both clones against mock
were separately submitted to pathway enrichment analysis using
g:Profiler tool43 that implements Fisher exact test and multiple-
test correction to evaluate pathway enrichment. Lists were
added as an unordered query. A list of gene names of all proteins
identified in our proteomics experiment was used as a landscape
for statistical testing. The organism of interest was set to Mus
musculus. Pathways from Gene Ontology Biological Process
(GOBP), Gene Ontology Molecular Function (GOMF), and
Gene Ontology Cellular Compartment (GOCC) databases
were included. Electronic GO annotations were excluded. The
minimal pathway size was set to 15, and the maximum was set to
1500. The results were visualized using the Cytoscape software
(version 3.10.)44 with the use of EnrichmentMap application
(version 3.3.6)45 with the FDR q-value cutoff 0.05 and Edge
cutoff (Similarity) 0.375.
Cell Proliferation
3 × 104 of MC3T3-E1 wt, mock, and Casp9 KO cells were
cultured in 6-well plates for 4 days. The cells were counted daily
using a CASY cell counter (Roche).
Cell Migration
Two different methods were used to analyze the cell migration.
First, the migration of control and Casp9 KO MC3T3-E1 cells
was monitored using an xCELLigence instrument (Roche,
Switzerland) as described previously.36 Briefly, CIM-plates 16
with complete growth medium (10% FBS) in the bottom
chambers were assembled. Cells were serum starved for 2 h,
detached with 1 mM EDTA/PBS, washed with PBS, counted,
and plated in serum-free medium in the upper chambers in
duplicates at a density of 7.5 × 104 per well. Impedance
(displayed as dimensionless parameter cell index) was
monitored every 15 min for 8 h. Second, a scratch (wound
healing) assay was used to monitor the migration of control and
Casp9 KO MC3T3-E1 cells. The cells were seeded in a 24-well
plate at a density of 3 × 104 per well. The cell monolayer was

wounded with a sterile pipet tip 72 h after seeding. Subsequently,
the fresh medium or medium supplemented with inhibitor/
DMSO as a control was added. The cells were photographed
every 3 h for 9 or 12 h postwounding using an Olympus IX53
microscope (×40), and cell migration was analyzed by Fiji
(NIH, USA) as changes in wound area (%). A wound healing
assay was performed subsequently also with wt MC3T3-E1 cells
treated with 100 μM CASP-9 inhibitor (218776, Sigma-
Aldrich), 100 μM CASP-3/-7 inhibitor (218832, Sigma-
Aldrich) or vehicle.
Inhibition of CASP-9 and CASP-3/-7 Activity

1× 105 of MC3T3-E1 cells were seeded into a 6-well plate. After
48 h, the cells were treated with 100 μM CASP-9 inhibitor
(218776, Sigma-Aldrich, USA) or 100 μMCASP-3/-7 inhibitor
(218832, Sigma-Aldrich, USA) for 6 h and then collected using a
1 mM EDTA/PBS solution for immunoblotting.
Immunoblotting

Cells were lysed, and proteins were resolved by SDS-PAGE and
immunoblotted as described previously.46 Blots were probed
with CASP-9 (#9508, Cell Signaling Technology, USA), cleaved
CASP-3 (#9661, Cell Signaling Technology, USA), ABHD2
(14039-1-AP, Proteintech, Germany), ADAM15 (GTX101599,
GeneTex, USA), BST-2 (sc-390719, Santa Cruz Biotechnology,
USA; 13560-1-AP, Proteintech, Germany; #60066S, Cell
Signaling Technology, USA), or α-tubulin (ab7291, Abcam,
UK) specific antibodies and horseradish peroxidase-conjugated
mouse or rabbit secondary antibodies (Sigma-Aldrich, USA).
The signal was developed with a standard ECL procedure using
ClarityTM Western ECL Substrate (Bio-Rad, USA).
qRT-PCR

Total RNA was isolated using the GenElute Total RNA
Purification Kit (Sigma-Aldrich, USA) and cDNA was isolated
using the QuantiTect RT Kit (Qiagen, Germany). qPCR was
performed with the KAPA SYBR Fast Master mix (KAPA
Biosystems, USA) with primers spanning exon−exon junctions
(Supplementary Data 2) using the LightCycler 480 (Roche,
Switzerland). Mouse Gapdh was used as the internal control.
The qRT-PCR data were analyzed by the ΔΔCt method.
Immunohistochemistry

Mouse front limbs and heads (CD1 mouse strain) were
collected fresh post-mortem, and prenatal (E) stage E15 was
examined. The samples were obtained in agreement with the
recent legislation in the Czech Republic, law 359/2012 Sb., in
which there is no specific requirement for post-mortem sampling.
Histological sections were deparaffinized in xylene and
rehydrated in a gradient series of ethanol. Consecutive sections
were pretreated in citrate buffer (10 min/98 °C) for antigen
retrieval and then incubated with ABHD2 antibody (14039-1-
AP, Proteintech, Germany) or antibody specific to cleaved
CASP-9 (9509, Cell Signaling Technology, USA) overnight.
After treatment with primary antibodies, the samples were
exposed to the secondary anti-rabbit antibody Alexa Fluor 488
(Thermo Fisher Scientific) for 40 min at RT. Nuclei were
detected by a ProLong Gold Antifade reagent with DAPI
(Thermo Fisher Scientific).
Statistics

Statistical analysis was performed with Prism v8.0.1 (GraphPad
Software, La Jolla, CA). All experimental data are presented as
mean ± SD and were analyzed with an unpaired t test unless
stated otherwise.
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■ RESULTS

Casp9 KO Affects the Proteotype of Osteoblastic Cells

To investigate the function of CASP-9 in osteoblastic cells, two
independent MC3T3-E1 Casp9 KO clones (A6 and B1) were
generated using the CRISPR/Cas9 approach. The absence of
the CASP-9 protein was confirmed by immunoblotting (Figure
1A) and the presence of a short Ins/Del within the Casp9 gene
was validated by DNA sequencing. Depletion of CASP-9 did not
alter cell morphology, as shown in Figure 1B. Next, to identify
proteins associated with Casp9 deficiency in MC3T3-E1 cells,
proteome changes in wt, mock, and both Casp9 KO clones were
evaluated in four biological replicates. Proteins were identified

and quantified using LC-MS/MS analysis in the diaPASEF
mode.
A total of 7669 protein groups were quantified (FDR < 0.01,

for log2 intensity distribution see Supplementary Data 3).
Protein levels of CASP-9 were significantly downregulated in the
A6 clone (log2FC = −1.30, q-value = 1.25 × 10−04) as well as in
the B1 clone (log2FC = −2.15, q-value = 2.50 × 10−06)
compared to the mock cells (Supplementary Data 4) and also
compared to the wt cell line (log2FC = −0.75, q-value = 3.95 ×
10−04 for A6 clone and log2FC = −1.59, q-value = 8.99 × 10−07

for B1 clone, Supplementary Data 5, for extracted ion
chromatograms, see Supplementary Data 6 and 7). The heatmap
(Figure 1C) visualizes the exact clustering of individual
biological replicates according to the experimental conditions

Figure 1. (A) Protein expression of CASP-9 in parental (wt), mock, and Casp9 KO clones of MC3T3-E1 cell line; α-tubulin was used as a loading
control. (B)Morphology of wt, mock, andCasp9KO clones ofMC3T3-E1 cell line; phase contrast microscopy, total magnification×40. (C)Heatmap
of biological replicates and protein groups clustering of wt, mock, and Casp9 KO MC3T3-E1 clones according to the sample protein profile. (D)
Volcano plot of differential protein abundance analysis betweenCasp9KOA6 clone andmock cells. (E) Volcano plot of differential protein abundance
analysis between Casp9 KO B1 clone and mock cells.
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as well as the clustering of protein groups that are significant in
an ANOVA test (q-value < 0.05). Compared to mock cells,

Casp9 KO was associated with significant (q-value < 0.05)
upregulation (log2FC > 0.58) and downregulation (log2FC <

Figure 2. Top 10 significantly positively and negatively enriched GO Biological Process pathways in the WebGestalt GSEA analysis: (A) of the A6
clone proteotype compared to the control mock cell line and (B) of the B1 clone proteotype compared to the control mock cell line. (C) Overlap of
significantly enriched GO Biological process pathways in WebGestalt GSEA analysis between A6 vs mock comparison and B1 vs mock comparison.

Figure 3. Gene Ontology terms enriched in g:Profiler analysis among up- and downregulated proteins simultaneously in both clones with Casp9 KO.
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−0.58) of 1117 and 731 proteins, respectively, in the A6 clone
(Figure 1D), and of 476 and 276 proteins in the B1 clone
(Figure 1E), respectively. Of these, 283 and 141 proteins were
upregulated and downregulated, respectively, in both clones
(Supplementary Data 8).

CASP-9 is Associated with Pathways of Cellular Migration
and Adhesion

To describe changes in protein abundances after Casp9 KO on a
proteotype-wide level, GSEA analysis was performed against the
Gene Ontology Biological Process database using the
WebGestalt tool.39 Casp9 KO in A6 and B1 clones compared

Table 1. Proteins Acting as Negative Regulators of Cell Migration Upregulated after Casp9 KO in Both Clones Compared to
Mock and wt Cellsa

A6 vs mock B1 vs mock A6 vs wt B1 vs wt

UniProt ID
Gene
name Protein Description

log2
FC q-value

log2
FC q-value

log2
FC q-value

log2
FC q-value

O88839 Adam15 Disintegrin and
metalloproteinase domain-
containing protein 15

0.83 1.68 × 10−03 0.91 3.94 × 10−03 1.77 1.79 × 10−05 1.89 5.97 × 10−05

P0C605 Prkg1 cGMP-dependent protein
kinase 1

0.63 5.35 × 10−05 0.66 1.61 × 10−04 0.92 2.13 × 10−05 0.96 3.49 × 10−05

P28828 Ptprm Receptor-type tyrosine-protein
phosphatase mu

1.39 3.98 × 10−07 0.65 7.50 × 10−09 1.64 1.77 × 10−08 0.91 4.56 × 10−09

P58771 Tpm1 Tropomyosin alpha-1 chain 1.44 2.12 × 10−06 0.65 2.90 × 10−07 1.33 2.01 × 10−06 0.56 1.63 × 10−06

Q08093 Cnn2 Calponin-2 1.10 7.86 × 10−07 0.68 8.66 × 10−07 1.31 1.80 × 10−07 0.92 5.66 × 10−08

Q08879 Fbln1 Fibulin-1 1.22 5.10 × 10−11 1.03 6.90 × 10−10 1.11 4.58 × 10−09 0.94 2.58 × 10−08

Q80U16 Ripor2 Rho family interacting cell
polarization regulator 2

2.11 2.61 × 10−05 1.39 5.27 × 10−04 1.55 2.50 × 10−05 0.88 3.49 × 10−04

Q8R2Q8 Bst2 Bone marrow stromal antigen 2 1.79 3.97 × 10−05 2.67 8.00 × 10−05 2.77 3.86 × 10−06 3.66 1.51 × 10−05

Q9QXM0 Abhd2 Monoacylglycerol lipase
ABHD2

1.37 1.66 × 10−07 1.19 1.50 × 10−07 1.46 4.80 × 10−07 1.31 2.36 × 10−06

aPreviously identified proteins upregulated in micromass cultures incubated with CASP-9 inhibitor47 are in bold.

Figure 4.Genetic or pharmacological inhibition of CASP-9 reduces migration but does not affect proliferation of MC3T3-E1 cells. (A) Growth curves
of parental (wt), mock, and Casp9 KO MC3T3-E1 cells. (B, D, E) Migration of wt, mock, and Casp9 KO MC3T3-E1 cells and wt MC3T3-E1 cells
treated with CASP-9 or CASP-3/-7 inhibitor or DMSO as a vehicle control determined using scratch assay. Wound area was analyzed after 12 h (wt,
mock,Casp9KO clones) or 9 h (CASP-9, CASP-3/-7 inhibitors, DMSO). (C)Migration of parental, mock andCasp9KOMC3T3-E1 cells monitored
using xCELLigence system. Results of a representative experiment are shown. Cell indexes at 5 h time point interval were compared. Significant
differences (*p < 0.05, **p < 0.01) are indicated. Data represents means ± SD from at least three independent experiments.
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tomock cells was associated with statistically significant (FDR q-
value < 0.05) positive enrichment (normalized enrichment score
(NES) > 0) of 71 and 91 GO BP pathways, respectively, and
negative enrichment (FDR q-value < 0.05, NES < 0) of 20 and
12 GO BP pathways, respectively (Figure 2A,B, Supplementary
Data 9). In total, 30 and 6 GO BP pathways were positively and
negatively enriched, respectively, in both clones compared to
mock cells (Figure 2C, Supplementary Data 10). The positively
enriched pathways in both clones were frequently associated
with cytoskeletal organization, morphogenesis, adhesion, and
locomotion. On the other hand, DNA replication, recombina-
tion and repair were found in negatively enriched pathways.
As a negative control for the Casp9 KO clones, we compared

the proteotypes of wt cells to the mock cells and performed
GSEA to define GO BP pathways associated with transfection
using the control plasmid. In this comparison, no GO BP
pathways were positively enriched, and a total of 35 pathways
were negatively enriched (Supplementary Data 9). None of the
pathways were negatively enriched in A6 and B1 clones
compared with mock cells. These results suggest that the
deregulated mechanisms observed in A6 and B1 clones are
specific to cells with silencedCasp9 gene and depend onCASP-9
function.
Next, an enrichment analysis of Gene Ontology pathways,

including Biological Processes (GOBP), Molecular Function
(GOMF), and Cellular Compartment (GOCC) terms, was
performed using the g:Profiler tool43 to define biological
pathways consisting of proteins strictly up- or downregulated
by Casp9 KO. These analyses included lists of 283 significantly
upregulated or 141 significantly downregulated proteins in both
clones simultaneously compared to the mock cell line. Enriched
pathways among the upregulated proteins included 8GOBP and
1 GOCC terms (Figure 3, Supplementary Data 11). These
include regulation of cell migration and motility, cell adhesion,
and proteins located on the plasma membrane. On the other
hand, downregulated proteins are involved in 3 GOBP pathways
that participate in DNA replication (Figure 3, Supplementary
Data 11).
The pathways associated with cellular migration enriched in

GSEA and g:Profiler analyses included 9 negative regulators of
cellular migration that were upregulated in both clones
compared to mock and wt cell lines (Table 1).

CASP-9 Regulates Migration but Not Proliferation of
MC3T3-E1 Cells

Proteomic data analysis suggested that CASP-9 may target
proteins involved in regulating cell proliferation and migration
of MC3T3-E1 cells. Proliferation analysis revealed no difference
in the growth rate of Casp9 KO cells compared to parental and
mock cells (Figure 4A). However, the ability of Casp9 KO cells
to migrate was reduced compared to parental and mock cells in
both wound healing and transwell/xCELLigence assays (Figure
4B,C). To further confirm the involvement of CASP-9 in
regulating the migration of MC3T3-E1 cells, cells were treated
with a CASP-9 inhibitor or vehicle, and their migration was
analyzed using a wound healing assay. Again, inhibition of
CASP-9 enzymatic activity resulted in the reduced migration of
MC3T3-E1 cells (Figure 4D). Interestingly, treatment with
CASP-3/-7 inhibitor did not affect the migration of MC3T3-E1
cells, suggesting that the migration-promoting role of CASP-9 is
not dependent on the activity of downstream caspases (Figure
4E).
ABHD2 Protein: Possible Substrate of CASP-9

Proteomic analysis revealed 9 possible substrates of CASP-9 that
are upregulated in Casp9 KO cells and were considered negative
regulators of cell motility by g:Profiler Gene Ontology pathway
analysis (Table 1). After a literature search and screening of
available databases,48,49 these proteins have not been identified
as CASP-9 substrates. Interestingly, four of these proteins
(ADAM15, fibulin-1, BST-2, and ABHD2) were found
previously to be upregulated in micromass cultures treated
with CASP-9 inhibitor by proteomic screen.47 Therefore, we
further focused our attention on these four proteins. BST-2 was
not detected by immunoblotting (Supplementary Data 12) and
fibulin-1 has been recently identified as a substrate of CASP-3,50

a downstream molecule of CASP-9 in proteolytic cascade, so
these two proteins were excluded from further analyses.
Increased levels of ABHD2 and ADAM15 proteins were
confirmed in both Casp9 KO clones (Figure 5A). Subsequent
qRT-PCR analysis revealed no significant differences in Abhd2
and Adam15 expression between the control and Casp9 KO
cells, suggesting that their deregulation occurs at the protein
level (Figure 5B).
To confirm the role of CASP-9 in the regulation of ABHD2

and ADAM15, MC3T3-E1 cells were treated with a CASP-9
inhibitor. Subsequent immunoblotting analysis revealed that the

Figure 5. (A) Protein and (B) mRNA levels of ABHD2 and ADAM15 in parental, mock, and Casp9 KO MC3T3-E1 cells; α-tubulin was used as a
loading control for immunoblotting. Data represents means ± SD from at least three independent experiments.
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ABHD2 protein level increased after CASP-9 inhibition but the
ADAM15 protein level remained unchanged (Figure 6).

Interestingly, neither ABHD2 nor ADAM15 protein levels
were altered by treatment with CASP-3/-7 inhibitor (Figure 6),
suggesting that downstream caspases are not involved in the
regulation/cleavage of these proteins.
ABHD2 is a widely expressed protein known primarily for its

function in sperm activation via progesterone signaling.51,52

However, its function and expression in osteoblasts during bone
development have never been demonstrated. Therefore, to

investigate the presence of ABHD2 in osteoblasts in vivo and to
analyze the colocalization of ABHD2 with cleaved CASP-9,
consecutive sections of mouse frontal limbs at prenatal stage E15
were examined by immunofluorescence. In all tested samples, a
positive signal of ABHD2 was detected in osteoblasts, and the
signal overlapped with that of active CASP-9 (Figure 7). These
data confirm the in vivo relevance of the results obtained from
the cell cultures.

■ DISCUSSION
Although caspases are known primarily for their role in various
forms of cell death and inflammation,1,2 recent studies have
identified other physiological and pathophysiological functions
of these proteases.2,53,54 This also applies for CASP-9 as well. We
have previously observed the expression of active CASP-9 in
nonapoptotic osteoblasts within the ossification zone of
developing long bones.55 To the best of our knowledge, the
functions of CASP-9 in osteoblasts, beyond the execution of
apoptosis, have not been studied yet. We thus performed a
proteomic screen to identify possible CASP-9 targets in
MC3T3-E1 cells, an osteoblastic cell line derived from mouse
calvaria, the common in vitro model for osteoblastic lineage.
MC3T3-E1 cells with depleted CASP-9 were generated using
the CRISPR/Cas9 approach, and their proteome was compared
to the proteome of parental/mock-transfected cells. To map the
changes in protein abundances associated with CASP-9
depletion, we used the diaPASEF approach that combines
peptide separation using trapped ion mobility spectrometry and

Figure 6. Protein levels of ABHD2 and ADAM15 in MC3T3-E1 cells
with inhibited CASP-9 or CASP-3/-7; α-tubulin was used as a loading
control.

Figure 7. Immunofluorescent staining of ABHD2 (A, C) and cleaved caspase 9 (clCASP9) (B, D) in the developing mouse frontal limb at prenatal day
E15. Both proteins were detected in consecutive sections. Positive signal in green (arrows), nuclei counterstained with DAPI (blue); total
magnification ×20 (A, B) or ×40 (C, D). hc, hypertrophic cartilage.
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precursor m/z window cycling.56 diaPASEF provides sensitive
peptide detection and data completeness56 and we have
previously shown this strategy to achieve superior proteome
coverage in chondrogenic micromass cultures compared to
other commonly used LC-MS/MS-based proteomics work-
flows.47 In the current study, Casp9 KO significantly affected,
namely, proteins associated with cell migration/motility and
DNA replication.
Using two different assays, we confirmed that Casp9 KO

results in impaired migration of the MC3T3-E1 cells. Cell
migration was also inhibited by an inhibitor of CASP-9
enzymatic activity, suggesting that the proteolytic activity of
CASP-9 plays a role. Previous studies have identified caspases,
including caspase-1, -3, -8, and -11, as regulators of cell migration
in various cells/tissues.57−64 Both enzymatic and nonenzymatic
functions were involved. However, studies investigating the role
of CASP-9 in the regulation of cell migration are rather limited.
Inhibition of DRONC, the fly ortholog of CASP-9, affected
border cell migration in Drosophila ovary.65 Other studies that
described an association between CASP-9 level/activity and
altered cell migration have been published, but in these studies,
apoptosis was induced by drug treatment or gene over-
expression, thus making the conclusion about direct link
between CASP-9 and cell migration impossible.66−70

Our proteomic screen identified proteins, described as
negative regulators of cell migration, that were upregulated in
Casp9 KOMC3T3-E1 cells and thus represent possible CASP-9
substrates. This study focused on two of them: ABHD2 and
ADAM15. ABHD2 is a member of a family of α/β hydrolase fold
domain proteins that mediate lipid metabolism and signal
transduction. It is ubiquitously expressed protein known for its
role in progesterone-mediated activation of sperm, regulation of
calcium signaling, lung development and function, monocyte/
macrophage recruitment/differentiation/activity, regulation of
viral replication, etc.52,71 ABHD2 deficiency enhances migration
of vascular smooth muscle cells, resulting in intimal hyperplasia
in mice.34 However, the expression and function of ABHD2 in
osteoblasts have never been determined. We found that the
ABHD2 protein is expressed in osteoblasts of the developing
mouse limb bones, its protein expression colocalizes with that of
active CASP-9, and its level is regulated by CASP-9 in MC3T3-
E1 osteoblasts. While genetic depletion or pharmacological
inhibition of CASP-9 in MC3T3-E1 cells resulted in an increase
of ABHD2 protein, activation of CASP-9 has an opposite effect.
Moreover, inhibition of downstream CASP-3 has no effect on
the ABHD2 protein, suggesting that this effector caspase is not
involved. Thus, our results suggest that ABHD2 is a direct target
of CASP-9, although we cannot exclude the possibility that other
downstream caspases and/or proteases activated by CASP-9
may play a role.
ADAM15 is another protein identified as upregulated in the

proteomic screen of Casp9 KO cells. Using immunoblotting, we
detected a higher level of its 75 kDa form that has been reported
to correspond to the mature form of this enzyme.72,73 However,
treatment with CASP-9 inhibitor did not confirm the
deregulation of ADAM15. We hypothesize that the alterations
in the mature form of ADAM15 are caused by the rather long-
term deregulation of CASP-9 in CRISPR clones. Consistent
with this hypothesis, a proteomic screen of chondrogenic
micromass cultures revealed higher ADAM15 levels after 7 days
of treatment with CASP-9 inhibitor.47 In MC3T3-E1 cells,
however, prolonged treatment with CASP-9 inhibitor signifi-
cantly reduces their viability, making longer exposure time

intervals difficult to achieve. We thus hypothesize that ADAM15
may not be a direct target of CASP-9 but may rather be
deregulated or cleaved by other proteases in response to long-
term CASP-9 inhibition.
Another upregulated protein in the proteomic screen ofCasp9

KO cells is Bst-2. Bst-2 is a transmembrane protein with putative
immunomodulatory functions.74 Bst-2 knockout mice have no
obvious phenotypic defects but show an altered antiviral
response.75−77 To the best of our knowledge, no function of
Bst-2 in bone homeostasis has been described. To confirm the
data obtained by mass spectrometry, we analyzed the expression
of Bst-2 in MC3T3-E1 control and Casp9 KO cells by
immunoblotting using three different antibodies. However, in
neither case were we able to obtain any reliable signal at a MW
corresponding to the mouse Bst-2 protein (30−35 kDa). We are
aware that the Bst-2 protein was detected using mass
spectrometry, but the success of immunoblotting detection is
highly dependent on the quality of the available antibodies.
Although antibody detection may be more sensitive than mass
spectrometry, the quality and specificity of antibodies are crucial.
The question of Bst-2 as a possible substrate of CASP-9 and the
physiological relevance of Bst-2 for bone homeostasis remain
thus open.
Bone formation, especially during bone remodeling and

fracture repair, requires mature osteoblasts to migrate to specific
sites in the three-dimensional environment. Understanding this
process is necessary as alterations in osteoblast migration and
navigation might significantly affect bone development and
metabolic bone diseases such as osteoporosis.78 Identification of
mechanisms that regulate these processes is thus an important
prerequisite for the design of targeted therapies.

■ CONCLUSIONS
We revealed CASP-9 as a modulator of osteoblastic cell
migration, and using a proteomic screen, we identified its
possible relevant targets. The ABHD2 protein, a known
regulator of cell migration, was subsequently validated as a
possible CASP-9 substrate using experiments with the genetic
and pharmacological inhibition of this protease. These data may
indicate a novel nonapoptotic function of CASP-9 in bone
remodeling and fracture repair, as the regulation of osteoblastic
cell migration is a key component of these physiological
processes.
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