J 2023

Conformal Fundamental Forms and the Asymptotically Poincare-Einstein Condition

BLITZ, Samuel Harris, A Rod GOVER a Andrew WALDRON

Základní údaje

Originální název

Conformal Fundamental Forms and the Asymptotically Poincare-Einstein Condition

Autoři

BLITZ, Samuel Harris (840 Spojené státy, domácí), A Rod GOVER a Andrew WALDRON

Vydání

Indiana University Mathematics Journal, INDIANA UNIV MATH JOURNAL, 2023, 0022-2518

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Impakt faktor

Impact factor: 1.100 v roce 2022

Kód RIV

RIV/00216224:14310/23:00133850

Organizační jednotka

Přírodovědecká fakulta

DOI

http://dx.doi.org/10.1512/iumj.2023.72.9518

UT WoS

001166610900002

Klíčová slova anglicky

Extrinsic conformal geometry; hypersurface embeddings; Poincare-Einstein metrics; Yamabe problem

Štítky

rivok

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 10:29, Mgr. Marie Šípková, DiS.

Anotace

V originále

An important problem is to determine under which circumstances a metric on a conformally compact manifold is conformal to a Poincare-Einstein metric. Such conformal rescalings are in general obstructed by conformal invariants of the boundary hypersurface embedding, the first of which is the trace-free second fundamental form and then, at the next order, the trace-free Fialkow tensor. We show that these tensors are the lowest-order examples in a sequence of conformally invariant higher fundamental forms determined by the data of a conformal hypersurface embedding. We give a construction of these canonical extrinsic curvatures. Our main result is that the vanishing of these fundamental forms is a necessary and sufficient condition for a conformally compact metric to be conformally related to an asymptotically Poincare-Einstein metric. More generally, these higher fundamental forms are basic to the study of conformal hypersurface invariants. Because Einstein metrics necessarily have constant scalar curvature, our method employs asymptotic solutions of the singular Yamabe problem to select an asymptotically distinguished conformally compact metric. Our approach relies on conformal tractor calculus as this is key for an extension of the general theory of conformal hypersurface embeddings that we further develop here. In particular, we give in full detail tractor analogs of the classical Gauss Formula and Gauss Theorem for Riemannian hypersurface embeddings.
Zobrazeno: 14. 11. 2024 17:35