J 2024

Semilinear elliptic Schrödinger equations with singular potentials and absorption terms

GKIKAS, Konstantinos T. and Phuoc-Tai NGUYEN

Basic information

Original name

Semilinear elliptic Schrödinger equations with singular potentials and absorption terms

Authors

GKIKAS, Konstantinos T. and Phuoc-Tai NGUYEN (704 Viet Nam, guarantor, belonging to the institution)

Edition

Journal of the London Mathematical Society, Wiley, 2024, 0024-6107

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.200 in 2022

Organization unit

Faculty of Science

UT WoS

001157209900010

Keywords in English

Hardy potentials; Critical exponents; Source terms; Capacities; Measure data

Tags

Tags

International impact, Reviewed
Změněno: 25/3/2024 15:14, Mgr. Marie Šípková, DiS.

Abstract

V originále

Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω be a compact, C2 submanifold without boundary, of dimension k with 0≤k1, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. p is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. p is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P).

Links

GA22-17403S, research and development project
Name: Nelineární Schrödingerovy rovnice a systémy se singulárním potenciálem (Acronym: NSESSP)
Investor: Czech Science Foundation