Detailed Information on Publication Record
2024
Semilinear elliptic Schrödinger equations with singular potentials and absorption terms
GKIKAS, Konstantinos T. and Phuoc-Tai NGUYENBasic information
Original name
Semilinear elliptic Schrödinger equations with singular potentials and absorption terms
Authors
GKIKAS, Konstantinos T. and Phuoc-Tai NGUYEN (704 Viet Nam, guarantor, belonging to the institution)
Edition
Journal of the London Mathematical Society, Wiley, 2024, 0024-6107
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.200 in 2022
Organization unit
Faculty of Science
UT WoS
001157209900010
Keywords in English
Hardy potentials; Critical exponents; Source terms; Capacities; Measure data
Tags
Tags
International impact, Reviewed
Změněno: 25/3/2024 15:14, Mgr. Marie Šípková, DiS.
Abstract
V originále
Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω be a compact, C2 submanifold without boundary, of dimension k with 0≤k1, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. p is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. p is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P).
Links
GA22-17403S, research and development project |
|