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Abstract
Introduction Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed 
emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health 
outcomes is limited.
Objective We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among 
firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress.
Methods 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary 
levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, 
low-density lipoprotein, and 8-hydroxy-2’-deoxyguanosine. Linear regression was used to assess associations with popula-
tion characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for 
potential confounding variables and false discovery rate procedure was applied to account for multiplicity.
Results The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound 
(detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for 
the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR 
compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = − 17.54%; 95% 
CI: − 26.127, − 7.962).
Conclusion This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. 
The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of 
exposure, and an urgent need for further research into associated adverse health outcomes.
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Introduction

Benzotriazoles (BTRs) and benzothiazoles (BTHs) are nitro-
gen-containing benzo-heterocyclic compounds (collectively 
called BTs) classified as high-production volume chemicals 
and emerging pollutants, currently applied in a variety of 
industrial activities and household products (e.g., dish-
washer detergents) (Liao et al. 2018; Shi et al. 2019). BTs 
are extensively used as corrosion inhibitors for copper and 
its alloys, UV-stabilisers, flame retardants, de-icing and anti-
fogging agents (Kokalj et al. 2011; Montesdeoca-Esponda 
et al. 2020; Naccarato et al. 2014), biocides (in the paper and 
leather industries), and vulcanization accelerators in rubber 
production (Liao et al. 2018). Due to their wide use along 
with poor removal efficiency in conventional wastewater 
treatment plants (WWTP), BTs have been detected in envi-
ronmental matrices, including virtually all types of water 
(Loos et al. 2010; Neuwald et al. 2022; Shi et al. 2019; Wang 
et al. 2023), indoor air and dust (Wan et al. 2016; Wang 
et al. 2013; Xue et al. 2017), soil (Speltini et al. 2016) and 
biosolids (Lai et al. 2014). Naturally, BTs have been detected 
in human urine (Asimakopoulos et al. 2012, 2013), amniotic 
fluid (Li et al. 2018), and adipose tissue (Wang et al. 2015), 
and the estimated main exposure routes are via diet (includ-
ing drinking water) (Castro et al. 2023b; Janna et al. 2011; 
LeFevre et al. 2017), air pollution inhalation (Maceira et al. 
2018; Wan et al. 2016; Wang et al. 2013), and dermal con-
tact (Avagyan et al. 2015; Liu et al. 2017). Firefighters are 
of particular concern due to potential occupational exposure 

from aqueous film forming foams (AFFFs), in which BTRs 
are used as anticorrosive agents (Ateia et al. 2023; Norman 
& Regina 1993; Titaley et al. 2022), and from smoke, which 
can contain both BTRs and BTHs due to their widespread 
application (e.g., as flame retardants) (Bonner et al. 2023; 
Poutasse et al. 2020; Zhang et al. 2020). However, there is 
still lack of data on, and understanding of human BT expo-
sure and its links with health outcomes. No complex human 
biomonitoring study has yet been carried out in Czechia nor 
anywhere in central or eastern Europe yet. There are few 
studies from Europe (Asimakopoulos et al. 2012, 2013), 
however, majority of the studies have focused on the expo-
sure of pregnant women in Asia due to potential prenatal 
exposure (Cao et al. 2023; Chen et al. 2020; Li et al. 2017, 
2018; Zhou et al. 2018, 2020). Extrapolation of these data to 
other populations can introduce bias due to regional differ-
ences in lifestyle factors, as well as legislation and policies 
concerning BT exposure.

Scientific literature covers various types of adverse 
effects of BTs, such as endocrine disruption, neurotoxic-
ity, and developmental toxicity, all reported in in vitro and 
in vivo animal studies (Liao et al. 2018; Shi et al. 2019). 
Adverse effects in pregnant women have also recently been 
addressed in some epidemiological studies (Cao et al. 2023; 
Zhou et al. 2020), revealing that BT exposure during preg-
nancy was associated with adverse maternal and infant 
health outcomes. Hepatotoxicity and oxidative stress have 
also been reported in experimental organisms after exposure 
to BTs (Duan et al. 2017; Liang et al. 2017). Alteration of 
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liver proteome and the hypertrophy of hepatocytes (prob-
ably induced by oxidative stress and cell apoptosis) were 
observed in fish models after BT exposure (Duan et al. 
2017; Kim et al. 2022; Liang et al. 2017). Activation of the 
liver peroxisome proliferator-activated receptor α (PPARα), 
cytochrome P450, and UDP-glucuronosyltransferase (UDP-
GT) and glutathione-S-transferase were reported in rats after 
the administration of BTs (Hirata-Koizumi et al. 2009; Seo 
et al. 2000). Hence, BT exposure might be a potential risk 
factor with respect to the development of liver injury also in 
humans. However, such associations have not yet been inves-
tigated in an epidemiological study. This taken together with 
recent epidemics of metabolic diseases, including increased 
rates of such diseases in firefighters (Soteriades et al. 2011), 
indicates an urgent need to identify modifiable risk factors 
(e.g., environmental pollutants) and focus on effective pre-
vention strategies.

Information on exposure levels in the male population or 
in occupationally exposed individuals is very limited. This 
is the first study of its kind in central Europe, which, inves-
tigated BT urinary concentrations in 165 men from Czechia, 
with a special focus on potential occupational exposure 
among firefighters. In addition, potential predictors of uri-
nary BTs as well as associations of urinary BTs with liver 
function, serum lipid, and oxidative stress biomarkers were 
examined. This paper provides insights into new extraction 
method for BTs in human urine and should increase the 
understanding of BT exposure patterns among men from 
central Europe as well as implications for their liver health.

Materials and methods

Study population

The present study included 165 participants of the CEL-
SPAC-FIREexpo study, a collaborative research project 
with the aim of assessing firefighters´ exposure to contami-
nants during firefighting (FF) and FF training, and also of 
determining chemical and biochemical biomarkers of expo-
sure and related biological responses. The study popula-
tion is described in detail in a previous work (Řiháčková 
et al. 2023). Briefly, all participants were physically active 
men from Czechia, who were 18–35-year-old non-smokers 
with no chronic diseases. Participants were divided into 3 
study sub-cohorts according to their relationship with FF: 
newly recruited firefighters before any professional training 
for active participation in responses to incidents (“NEW”; 
n = 58), professional firefighters actively participating in 
responses to incidents (“PROF”; n = 52), and a control 
group of non-firefighters recruited at the Faculty of Sport, 
Masaryk University, Brno (Czech Republic) (“CTRL”; 
n = 55). Upon inclusion in the study, all participants 

answered questionnaires and provided morning void urine 
for the analyses of BTs and oxidative stress biomarker, and 
a fasting blood sample for the analyses of liver function and 
serum lipid biomarkers. A subset of randomly selected par-
ticipants (n = 20) from CTRL (n = 10) and NEW (n = 10) 
also provided a second sample of urine 10 weeks later. 
Information regarding the questionnaires and the transpor-
tation and storage of samples is available in Supplementary 
Information (SI) (section Sample collection and storage and 
Table S1). The study was approved by the ELSPAC Ethics 
Committee in 2019, and all participants gave their written 
informed consent.

Assessment of exposure

Sample pre‑treatment

A list of chemical compounds and reagents used is avail-
able in SI (section Chemicals and reagents). Frequently 
used BTs and their potential metabolites were identified on 
the basis of a literature search and a total number of six 
BTRs (1-H-benzotriazole [1H-BTR], 4-OH-benzotriazole 
[4OH-BTR], 1-methyl-benzotriazole [1M-BTR], 4-methyl-
benzotriazole [4M-BTR], 5-methyl-benzotriazole [5M-
BTR] and xylyltriazole [XTR]) and two BTHs (2-hydoxy-
benzothiazole [2OH-BTH] and 2-amino-benzothiazole 
[2NH2-BTH]) were analysed. The isomers 4M-BTR and 
5M-BTR were expressed as their sum (4/5M-BTR). The 
sum of free and conjugated forms in urine was determined 
following a procedure reported in a previous study (Bláhová 
et al. 2023) with modifications. Urine samples were thawed 
and vortexed, and 500 µL of urine sample was introduced 
into a 2 mL plastic tube. 10 µL of a mixture of isotopically 
labelled internal standards (d4-1H-BTR and d5-atrazine) 
were added to achieve the concentration in samples 10 and 
2 ng/mL, respectively. Next, the samples were spiked with 
β-glucuronidase (500 µL, 1000 U/mL in 1 M  CH3COONH4, 
from Helix pomatia), vortexed, and incubated overnight 
(37 °C, 170 rpm) to release free forms via enzymatic de-
conjugation. The enzymatic reaction was stopped by freez-
ing at − 80 °C (6 h). The samples were then freeze-dried 
and extracted with 500 µL of isopropanol. Different types 
of β-glucuronidase (E.coli) and extraction solvents (based 
on literature search: acetonitrile (Bláhová et  al. 2023), 
acetonitrile:dichloromethane (1:1) (Asimakopoulos et al. 
2012), and methyl tert-butyl ether:ethyl acetate (5:1) (Li 
et al. 2017)) were also tested. A better de-conjugation effect 
for BTs and lower concentrations of analytes in blanks (the 
contamination of blanks) were observed for β-glucuronidase 
from Helix pomatia when compared to E.coli (data not 
shown). All tested solvents resulted in similar recoveries. 
Insoluble particles were removed by centrifugation (12,000 
rcf, 10 min, 10 °C); the clear supernatants were evaporated 
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to dryness and then reconstituted in 10% methanol (v/v). 
Possible residual particles in final extracts were removed 
using microspin filters (0.2 µm, cellulose acetate, Fisher Sci-
entific). Filtrates were stored in glass inserts at − 20 °C until 
instrumental analyses.

Instrumental analysis

A Waters Acquity LC chromatograph (Waters, Manchester, 
U.K.) coupled with a Xevo TQ-S quadrupole mass spec-
trometer (Waters Manchester, U.K.) (LC–MS/MS) operated 
in positive electrospray ionization (ESI) mode was used for 
the determination of BTs. The ionization parameters were as 
follows: capillary voltage, 0.84 kV; source temperature and 
desolvation temperature, 150 and 500 °C, respectively; cone 
gas flow, 150 L/h; desolvation gas flow, 600 L/h; and colli-
sion gas flow, 0.15 mL/min. The cone voltage and collision 
energy were optimized for each analyte. The MRM transi-
tions are shown in Supplementary Information (Table S2). 
A BEH C18 (100 × 2.1 mm; 1.7 μm) analytical column 
(Waters) kept at 40 °C was used for chromatographic separa-
tion. Acidified (0.1% formic acid) water (A) and acetonitrile 
(B) were used as mobile phases with the following gradi-
ent—10% B at 0–1 min, 10% to 40% B at 1–3 min, 40% to 
80% B at 3–7 min, and 80% of B kept for 1 min followed by 
2 min of equilibration to the initial conditions (10% B). The 
flow rate was 0.35 mL/min, and 9 μL was injected for the 
analyses. Data were processed by MassLynxTM software 
(Waters, Manchester, U.K.). The concentrations of analytes 
were corrected for the content of internal standards.

Urine creatinine levels and specific gravity were deter-
mined for the adjustment of urinary BT levels. Creatinine 
levels were determined by LC–MS/MS using a modified pro-
cedure described by Derezińsky and collective (Dereziński 
et al. 2016). Urine specific gravity (SG) was measured using 
a handheld PAL-10 S refractometer (Atago, Japan). Formu-
las used for the adjustments are presented in the Supplemen-
tary Information (Table S3).

Quality control and quality assurance

After the extraction procedure, two procedural blanks and 
one spiked sample (water spiked with target compounds, 
5 ng/mL) were included in each analysis batch. Quality con-
trol samples were analysed after every 25 urine samples and 
repeatability was found to be acceptable (RSD ≤ 11.2%). The 
mean recoveries of analytes in spiked samples were in the 
range of 94.4–116.3% (Table S4).

The method limits of quantification (MLOQ) were cal-
culated as 3 times the standard deviation (SD) of the blanks 
(N = 8) and for analytes that were not detected in the pro-
cedural blanks, a signal-to-noise ratio (S/N) > 10 was used 
as a criterion for the estimation of MLOQ. The MLOQs are 

summarized in Table S2. For BTs detected in blanks, the 
measured concentrations were corrected by subtracting their 
respective median blank concentrations (Table S4).

Assessment of liver function, serum lipid, 
and oxidative stress biomarkers

The levels of the enzymes alanine aminotransferase (ALT, 
in μkat/L), alkaline phosphatase (ALP, in μkat/L), aspartate 
aminotransferase (AST, in μkat/L), γ-glutamyl transferase 
(GGT, in μkat/L) and total bilirubin (TBIL, in μmol/L) in 
blood serum were considered as markers of liver function. 
Total serum cholesterol (CHOL, mmol/L) and low-density 
lipoprotein (LDL, mmol/L) were considered as indicators 
of blood serum lipids. Both liver and lipid biomarkers were 
measured spectrophotometrically with an Alinity c instru-
ment (©Abbott, Illinois, USA).

8-hydroxy-2’-deoxyguanosine (8OHdG), a biomarker 
of oxidative stress, was measured in urine by LC–MS/
MS following the method described in detail previously 
(Bláhová et al. 2023). Briefly, thawed urine samples (500 
µL) were spiked with internal standard (15N5-8-hydroxy-
2′-deoxyguanosine), vortexed, and then lyophilized. After 
extraction with isopropanol, supernatants were evaporated 
to dryness and redissolved in 0.1% formic acid (v/v), and 
the final extracts were stored at -20 °C until LC–MS/MS 
analysis.

Statistical analysis

Detection frequencies (DF), means, and selected percentiles 
(25th, 50th and 75th) were calculated to describe the distri-
bution profiles of SG-adjusted and creatinine-adjusted uri-
nary BTs. SG-adjusted urine BT levels were used for further 
statistical analyses (Sauvé et al. 2015). Creatinine-adjusted 
and unadjusted levels were calculated to allow easy com-
parison with other published studies. Only compounds with 
DF higher than 50% were imputed based on maximum like-
lihood multiple estimations dependent on observed values 
and their distribution (log-normal) (Lubin et al. 2004), and 
then included in subsequent analyses. The intraclass cor-
relation coefficient (ICC), ratio of between-individual vari-
ance to the sum of between- and within-individual variances, 
was employed to estimate the temporal variability of uri-
nary BTs using the subset of participants (n = 20), who pro-
vided a second urine sample 10 weeks after the first sample. 
Selected percentiles (25th, 50th and 75th) were calculated 
for biomarkers of liver function, serum lipids, and oxida-
tive stress. SG-adjusted and imputed urinary BTs and SG-
adjusted 8OHdG, as well as liver function, serum lipid and 
oxidative stress biomarkers measured in serum were log2 
transformed to address skewness and improve the normality 
of the distribution.
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Spearman´s correlation coefficients were computed 
to assess pair-wise correlations between individual BTs, 
demographic characteristics of the study population (age, 
BMI, FF career length and contact with FF foams) and bio-
markers of liver function, serum lipids and oxidative stress. 
Statistical differences between the sub-cohorts were inves-
tigated by ANOVA/Kruskal–Wallis ANOVA with Tukey/
Wilcox post hoc tests. Then, the data were standardized for 
the interquartile range (to reduce the influence of outliers) 
and used in linear regression models to examine the associa-
tions of urinary BTs with demographic characteristics of the 
study population, such as age (in years), BMI (in kg/m2), 
former smoking (yes/no), study sub-cohort (CTRL/NEW/
PROF), sampling season (spring/summer/winter/autumn), 
and contact with FF foams in the last year (never/one time/
two or more times). Next, associations between urinary BTs 
(explanatory variables) and biomarkers of liver function, 
serum lipids, and oxidative stress (dependent variables) were 
assessed using multiple linear regression models. Minimal 
sufficient adjustment set of confounding factors included in 
multiple linear regression models was identified on the basis 
of a priori knowledge, directed acyclic graph (DAG, Fig. S1) 
(Shrier & Platt 2008) and results from linear regression 
models. Firstly, a basic model (Model 1) was constructed 
and adjusted for age (in years), BMI (in kg/m2), and former 
smoking (yes/no). Additional potentially confounding vari-
ables were included in the second model (Model 2) – sam-
pling season (spring/summer/winter/autumn) and study 
sub-cohort (CTRL/NEW/PROF). To reduce false positive 
findings due to the multiplicity of statistical tests, the false 
discovery rate (FDR) procedure was applied (Benjamini & 
Yekutieli 2005).

Sensitivity analyses were performed to test the robustness 
of the obtained results. Considering the potential correla-
tions among urinary BTs which have similar sources, we 
constructed the Multiple-BTs model by including all BTs 
in the multiple linear regression models simultaneously in 
order to estimate associations with liver function, serum 
lipid and oxidative stress biomarkers after controlling for 
all BTs. To assess the sensitivity of the obtained results to 
the urinary dilution adjustment method, linear regression 
analyses were performed again with data adjusted for cre-
atinine instead of specific gravity.

Estimated daily intake

The daily intake of BTs was estimated based on urinary 
concentrations of ∑8 BTs and a simple steady-state kinetic 
model. To calculate ∑8 BTs, imputed and SG-adjusted val-
ues were used for analytes with a detection frequency higher 
than 50%, while for the rest of the BTs, concentrations below 
MLOQ were substituted with the value MLOQ/square root 
of 2. The values of all 8 BTs were then summed for each 

participant. The estimation of daily intake was undertaken 
using the following formula derived from an equation used 
in previous studies (Katsikantami et al. 2019; Šulc et al. 
2022):

where EDI is Estimated Daily Intake,  cU is the SG-adjusted 
concentration of BTs in urine,  VUO is the urine output vol-
ume (1.7 L/day (Perucca et al. 2007)),  FUE is the urinary 
excretion factor, and b.w. is the body weight of the partic-
ipant. However, the pharmacokinetics of BTs is not well 
known; hence, 3 theoretical excretion scenarios with dif-
ferent  FUE were considered: A) a worst-case scenario, in 
which only 10% of daily intake is excreted through urine 
 (FUE = 0.10); B) a medium scenario, in which 50% of daily 
intake is excreted via urine  (FUE = 0.50); and lastly C) a best-
case scenario, in which 90% of daily intake is excreted via 
urine  (FUE = 0.90). All statistical analyses were performed 
using Rstudio version 4.2.3 (RStudio Team 2020).

Results

Characteristics of the study population

Population characteristics and the levels of selected bio-
markers are shown in Table 1. All participants were physi-
cally active men, non-smoking men between the ages of 18 
to 35 years; the mean age was 26.4 ± 4.3 years. The mean 
BMI was 25.8 ± 2.7 and 13% of participants reported for-
mer smoking. Regarding the study sub-cohorts, PROF par-
ticipants were slightly older compared to NEW and CTRL 
participants and the mean of the firefighting career length 
was 4.6 ± 3.4 years. The PROF sub-cohort also had the high-
est proportion of participants who had been in contact with 
firefighting foams two or more times in the previous year. 
PROF had statistically lower levels of ALP. Lower levels 
of GGT and higher levels of 8OHdG were observed for the 
CTRL sub-cohort. PROF had statistically higher levels of 
CHOL and LDL.

The Spearman correlation matrix is available in Supple-
mentary Information (Fig. S2). Briefly, levels of ALT, GGT, 
CHOL, and LDL were positively correlated with BMI and 
length of FF career. ALP, AST, and 8OHdG were negatively 
correlated with FF career length. Age was negatively cor-
related with TBIL and ALP, but positively correlated with 
ALT, CHOL, and LDL. ALP, ALT, and GGT were nega-
tively correlated with 1H-BTR. Moreover, GGT was nega-
tively correlated also with 1M-BTR. 1H-BTR, 1M-BTR, and 
2OH-BTH did not significantly correlate with each other. 

EDI (�g∕kg∕day) =
cU (�g∕L) × VUO (L∕day)

FUE × b.w. (kg)
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1M-BTR was negatively correlated with FF career length, 
contact with FF foams, and former smoking.

Urinary concentrations of BTs

Urinary concentrations of BTs were measured in 165 sam-
ples. DFs and the levels of SG-adjusted urinary BTs are 
displayed in Table 2. Creatinine-adjusted and unadjusted 
values are available in Table S5 and S6. DFs ranged from 
1.8% up to 83% and only three BTs (1H-BTR, 1M-BTR, 
and 2OH-BTR) were detected in over 50% of urine sam-
ples. The most frequently detected compound was 2OH-
BTH (83.0%), followed by 1M-BTR (77.0%) and 1H-BTR 
(50.3%). These 3 BTs were included in subsequent analy-
ses. 2OH-BTH was also the most abundant, with a median 

concentration of 1.95 ng/mL, followed by 1M-BTR, with a 
median of 1.79 ng/mL. The highest maximum concentra-
tion (46.8 ng/mL) was observed for 1M-BTR. The ICCs 
for urinary 1H-BTR, 1M-BTR, and 2OH-BTH were 0.54, 
0.48, and 0.46, respectively (Table S7).

Sub-cohort-specific data are displayed in Fig. 1 and 
Table S8. Significantly higher concentrations of 1M-BTR 
were observed in CTRL compared to PROF. In the case 
of 2OH-BTH, NEW had significantly higher levels com-
pared to PROF. Results from linear regression models 
(Table 3) showed that sub-cohort and contact with AFFFs 
were predictors of urinary 1M-BTR (p < 0.05), which is in 
line with descriptive statistics. PROF and NEW tended to 
have lower urinary levels of 1M-BTR compared to CTRL. 
Participants who had been in contact with AFFFs two or 

Table 1  Population characteristics and liver function, serum lipid and oxidative stress biomarkers for CELSPAC-FIREexpo study participants

“ * “ means statistically different from other sub-cohorts. “ + “ means statistically different from controls

Characteristics Overall study population NEW PROF CTRL
n = 165 n = 58 n = 52 n = 55

Mean ± SD

Age (years) 26.4 ± 4.3 25.0 ± 3.6 28.4 ± 3.6* 25.9 ± 4.8
BMI 25.8 ± 2.7 26.3 ± 2.8+ 26.1 ± 2.4 24.9 ± 2.7
FF career length 1.68 ± 2.8 0.67 ± 0.66 4.58 ± 3.4 0 ± 0
Former smoking (yes) 13.0% 12.0% 19.0% 7.4%
Contact with FF foams in the last year
 Never 65.5% 69.5% 25.0% 98.2%
 One time 22.4% 25.4% 40.4% 1.8%
 Two or more times 12.1% 0.0% 34.6% 0.0%

Biomarkers Median (25–75th percentile)

TBIL (µmol/L) 13.1 (9–17) 14.0 (9.23–17) 13.0 (9–17) 13.0 (9.5–18.5)
ALP (µkat/L) 1.19 (1.02–1.4) 1.21 (1.04–1.42) 1.10* (0.98–1.24) 1.25 (1.06–1.53)
ALT (µkat/L) 0.43 (0.34–0.56) 0.42 (0.34–0.53) 0.48 (0.38–0.64) 0.42 (0.33–0.54)
AST (µkat/L) 0.47 (0.4–0.62) 0.46 (0.4–0.54) 0.45 (0.38–0.61) 0.55 (0.45–0.68)
GGT (µkat/L) 0.34 (0.25–0.44) 0.35 (0.26–0.43) 0.39 (0.29–0.53) 0.29* (0.22–0.34)
CHOL (mmol/L) 4.5 (4.1–5.2) 4.5 (3.9–4.8) 4.9* (4.4–5.4) 4.4 (3.8–5.1)
LDL (mmol/L) 2.8 (2.4–3.3) 2.6 (2.3–3.1) 3.2* (2.7–3.7) 2.8 (2.2–3.3)
8OHdG (SG) (µg/L) 4.90 (3.83–6.59) 4.58 (3.52–6.13) 4.56 (3.79–6.02) 5.82* (4.29–8)

Table 2  Detection frequencies 
(DF, %) and distribution 
profiles of SG-adjusted urinary 
BT concentrations (ng/mL) 
(n = 165)

Analytes DF (%) Mean SD Min Percentile Max

25th 50th 75th

1H-BTR 50.3 0.83 1.63  < MLOQ  < MLOQ 0.34 0.95 13.2
4OH-BTR 17.0 0.37 1.42  < MLOQ  < MLOQ  < MLOQ  < MLOQ 12.1
1 M-BTR 77.0 3.71 6.32  < MLOQ 0.17 1.79 3.80 46.8
4/5 M-BTR 1.80  < MLOQ  < MLOQ  < MLOQ  < MLOQ  < MLOQ 1.95
XTR 4.80  < MLOQ  < MLOQ  < MLOQ  < MLOQ  < MLOQ 0.43
2OH-BTH 83.0 2.52 2.65  < MLOQ 0.99 1.95 3.40 21.0
2NH2-BTH 3.00  < MLOQ  < MLOQ  < MLOQ  < MLOQ  < MLOQ 1.82
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more times in the previous year tended to have lower levels 
of 1M-BTR.

Former smoking was negatively associated with 
1M-BTR. Sampling season was not a significant predic-
tor of urinary BTs. Age, BMI, and length of FF were not 
significantly associated with any urinary concentrations of 
BTs (p > 0.05). The results were consistent with sensitivity 
analysis (Table S9).

Associations of urinary BTs with liver function, 
serum lipid, and oxidative stress biomarkers

Multiple linear regression models showed some nega-
tive associations with liver enzymes across both diversely 
adjusted models and the results are presented in Fig.  2 
and Tables S10 and S11. Results are expressed as the per-
centage change in the biomarker upon the doubling of the 

Fig. 1  Levels of SG-adjusted 
urinary BTs (1H-BTR, 
1M-BTR, and 2OH-BTH) in the 
study sub-cohorts. Boxplots dis-
play medians (horizontal lines), 
first and third quartiles (boxes), 
and 10th and 90th percentiles 
(whiskers). “*” refers to a sta-
tistically significant difference 
(p < 0.05)

Table 3  Associations between 
SG-adjusted concentrations of 
BTs in urine and population 
characteristics

β-coefficient refers to the relative change (%) in urinary BTs for every unit increase/change in population 
characteristics
*statistical significance (p < 0.05)

Characteristics 1H-BTR 1 M-BTR 2OH-BTH

β p value β p value β p value

Age − 4.2 0.685 4.3 0.648 − 1.8 0.858
BMI − 12.0 0.146 − 0.3 0.970 − 6.6 0.427
Sub-cohort
 CTRL Reference Reference Reference
 NEW 2.3 0.881 − 24.0 0.039* 24.7 0.134
 PROF − 6.0 0.696 − 29.5 0.011* − 21.8 0.104
 Length of FF career − 4.6 0.305 − 5.5 0.157 − 3.6 0.419

Contact with FF foams 
in the last year

 Never Reference Reference Reference
 One time 6.6 0.682 − 21.7 0.069 0.3 0.984
 Two or more times − 7.5 0.698 − 30.9 0.032* − 5.0 0.794

Sampling season
 Autumn Reference Reference Reference
 Spring 18.8 0.282 2.7 0.851 − 10.7 0.477
 Summer 7.0 0.660 29.3 0.058 − 14.1 0.317
 Winter − 46.2 0.057 − 2.0 0.942 − 27.6 0.315

Former smoking
 No Reference Reference Reference
 Yes 7.6 0.701 − 30.7 0.027* − 13.2 0.449
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SG-adjusted concentration of BTs in urine. Urinary 1H-BTR 
was negatively associated with ALP, ALT, and GGT in 
Model 1. In Model 2, 1H-BTR remained significantly asso-
ciated only with ALP (− 13.7%, 95% CI: − 22.4%, − 4.1%). 
The observed associations of 1H-BTR with ALT and GGT 
in Model 1 were probably caused by associations with sam-
pling season and study sub-cohort, which were included in 
Model 2 as confounding variables. 1M-BTR was also asso-
ciated with ALT and GGT, and these associations were sig-
nificant in both models. Relative changes − 12.0% (95% CI: 
− 21.5%, − 1.4%) and − 15.5% (95% CI: − 24.2%, − 5.7%) 
per doubling of urinary 1M-BTR were observed in Model 
2 for ALT and GGT, respectively. These three associations 
(1H-BTR and ALP, 1M-BTR and ALT, and 1M-BTR and 
GGT) were considered the most robust ones because they 
were observed also in sensitivity analyses (Table S12 and 
S13). However, after FDR correction for the multiplicity of 
statistical tests, only the negative association of 1M-BTR 
with GGT in Model 1 remained significant.

Estimated daily intake

The median values of EDI for the sum of 8 BTs based on 
a simple steady-state model and best-case, medium, and 
worst-case scenarios were 0.14, 0.25, and 1.30 µg/kg of b.w./
day, respectively (Table 4). The best-case scenario ranged 

from 0.03 to 1.4 µg/kg of b.w./day, the medium scenario 
from 0.05 up to 2.4 µg/kg of b.w./day, and the worst-case 
scenario from 0.25 up to 12 µg/kg of b.w./day. No statisti-
cally significant differences in EDIs were observed between 
the sub-cohorts (Table S14).

Discussion

To the best of our knowledge this is the first study focused on 
characterization of exposure and predictors of urinary BTs 
in Czech as well as central European male population. 3 out 
of 8 analysed BTs had detection rate higher than 50%, which 
suggest prevalent exposure to BTs among study population. 
The studied compounds were not significantly correlated 
with each other implying different sources of exposure.

The observed exposure levels were comparable with 
those found in other currently available studies (the same 
order of magnitude) (Asimakopoulos et al. 2012, 2013; Cao 
et al. 2023; Chen et al. 2020; Li et al. 2018; Zhou et al. 
2018, 2020). There is only one European study population 
with measured urinary BT levels (Asimakopoulos et al. 
2012, 2013). Geometric means of unadjusted urine con-
centrations of 1H-BTR and 2OH-BTH in the Greek male 
sub-population (n = 50) were 1.05 and 1.77 ng/mL, respec-
tively, which is comparable with the results from our study 

Fig. 2  Adjusted β-coefficients 
and 95% confidence intervals 
(CI) between the SG-adjusted 
urinary levels of BTs and the 
set of biomarkers from the 
multiple linear regression 
model (n = 165). Estimates are 
expressed as the percentage 
change in the median of the bio-
marker upon doubling of the BT 
urinary concentration. Model 1 
was adjusted for age, BMI, and 
former smoking; Model 2 was 
adjusted for age, BMI, former 
smoking, study sub-cohort, and 
sampling season. “*” refers 
to statistical significance after 
FDR correction

Table 4  Estimated daily 
intakes (µg/kg of body weight/
day) for the sum of 8 BTs for 
3 theoretical toxicokinetic 
scenarios.  FUE – urine excretion 
factor, SD – standard deviation

FUE Mean SD Percentile

25th 50th 75th

Best-case scenario 0.9 0.19 0.19 0.09 0.14 0.23
Medium scenario 0.5 0.35 0.33 0.15 0.25 0.42
Worst-case scenario 0.1 1.70 1.70 0.77 1.30 2.10
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(Table S6). However, the DFs were markedly lower in the 
case of the Greek male sub-population—16% and 8% for 
1H-BTR and 2OH-BTH, respectively (Asimakopoulos et al. 
2012). Inconsistency in DF was probably caused by differ-
ent limits of quantification, which were lower in our study, 
and hence, made our study more sensitive. A recent study 
from Wuhan (China) reported urinary BT levels in preg-
nant women (Zhou et al. 2018). The detection frequencies of 
1H-BTR and 2OH-BTH were similar (60% and 81%, respec-
tively), but the median values were lower compared to our 
study (0.1 and 0.28 ng/mL, respectively), more profoundly 
in the case of 2OH-BTH (almost 7 times lower). The maxi-
mum values for 1H-BTR and 2OH-BTH were higher (36 
and 160 ng/mL, respectively), suggesting the presence of 
extreme values in the Chinese population. Higher DF com-
pared to our study were observed for XTR, 4/5 M-BTR and 
2NH2-BTH (57–66%). They reported median levels below 
our MLOQs, which was probably the main reason for the 
observed differences (Zhou et al. 2018). A similar pattern of 
BT urine profiles was observed in three other Chinese stud-
ies of pregnant women from Wuhan (Cao et al. 2023; Chen 
et al. 2020; Zhou et al. 2020). In general, besides various 
limits of quantification arising from analytical procedures 
and varying sample sizes, also regional exposure differences, 
demographic characteristics of the population (especially 
sex), lifestyle factors and physiological parameters need to 
be considered. Moreover, relatively low ICCs observed in 
this study (< 0.6) are in line with previous studies (Cao et al. 
2023; Chen et al. 2020; Zhou et al. 2018) and imply that 
urinary BTs are highly variable in time.

In contrast to previous work, we reported the detection 
of 1M-BTR in human urine for the first time. There is very 
little information available about this compound regarding 
its industrial use or its toxicological potential; however, it 
has been detected in the environment, including rivers (Loos 
et al. 2010) and local WWTP effluent (Fialová et al. 2023). 
Benzotriazoles are ubiquitous in the environment, hence, 
possible products of microbial biodegradation need to be 
considered along with parental compounds in the assessment 
of human exposure. Biotransformation rates, BT metabo-
lites, as well as specific pathways vary substantially under 
different redox conditions. In both anaerobic and aerobic 
conditions, 5M-BTR was found to be transformed into 
1H-BTR, which was found to be transformed into 1M-BTR 
(Alotaibi et al. 2015; Huntscha et al. 2014; Liu et al. 2011). 
Besides potential human exposure to 1M-BTR through 
drinking water, dietary exposure should be considered as 
a potential exposure pathway due to the contamination of 
aquatic ecosystems (and exposure via the consumption of 
fish and seafood) (Castro et al. 2023a) and the use of vari-
ous types of water bodies (including treated wastewater and 
sludge from WWTP) for the irrigation of agricultural fields, 
which can additionally result in plant up-take (Kodešová 

et al. 2023). For these reasons and in light of the obtained 
results in our study, we highly recommend the use of uri-
nary 1M-BTR as a new potential biomarker of exposure to 
benzotriazoles in future biomonitoring studies along with 
currently used portfolio of BT biomarkers.

AFFFs, firefighting foams used for extinguishing flam-
mable liquid fires (e.g., from petroleum-based fuels), have 
recently become a cause of significant concern due to their 
high content of per- and polyfluoroalkyl surfactants (PFAS) 
(Řiháčková et al. 2023). Besides PFAS, they contain also 
benzotriazole corrosion inhibitors, and, hence, represent 
a potential occupational source of BTR exposure for fire-
fighters (Ateia et al. 2023; Norman & Regina 1993; Titaley 
et al. 2022). The results suggest that in this study, AFFFs 
were probably not a significant exposure source for firefight-
ers, probably due to the low frequency of AFFF use dur-
ing responses to incidents. However, short-term increases 
in BT levels, followed by fast metabolization and excretion 
shortly after exposure to AFFFs cannot be ruled out due to 
unknown pharmacokinetics. Such fluctuations have already 
been reported in firefighters with respect to urinary polycy-
clic aromatic hydrocarbons (PAHs) after contact with fire 
(Řiháčková et al. 2023). Moreover, we hypothesise that the 
observed differences in urinary BTs between the sub-cohorts 
might also be due to exposure to other chemicals. Firefight-
ing is one of the most hazardous occupations combining 
extreme physical and psychological demands with exposure 
to both high temperatures and a complex mixture of hazard-
ous pollutants (Barros et al. 2021; Trowbridge et al. 2020). 
As reported in our previous study, both PROF and NEW 
had significantly higher levels of PFAS and PAHs in their 
serum and urine samples compared to the control sub-cohort 
(Řiháčková et al. 2023). We assume such a load of chemicals 
due to occupation can exploit detoxifying systems, which 
can result in slower metabolization (and excretion) of xeno-
biotics compared to individuals with lower overall chemi-
cal exposure. Regarding negative associations with former 
smoking, we assume that this observation might be biased 
by the low abundance of former smokers in our study cohort 
(12.7%), which could affect the statistical power. Sam-
pling season was not a significant predictor of urinary BTs 
although it has been reported as such previously (Zhou et al. 
2018). Seasonal variability of BT exposure occurs due to 
their use as aircraft de-icing and anti-icing fluids (ADAFs), 
which are massively used during the cold season creating 
contamination hotspots around airports (Olds et al. 2022; 
Seeland et al. 2012). No strong air traffic in the South Mora-
vian region might be a reason for the lack of seasonal vari-
ability in this study.

A previous experimental study on rare minnows (Gobi-
ocypris rarus) demonstrated adverse effects of BT expo-
sure on liver proteome (the alteration of 26 proteins related 
mainly to xenobiotic clearance, oxidative stress response, 
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apoptosis, and translation) as well as histopathological 
changes in liver tissue, including the hypertrophy of hepat-
ocytes (Liang et al. 2017). Increased levels of antioxidant 
enzymes such as glutathione-S-transferase (GST), catalase 
(CAT), and superoxide dismutase (SOD), and the increased 
expression of liver-specific fatty acid binding protein were 
observed in medaka (Oryzias latipes) and zebrafish (Danio 
rerio) (Duan et al. 2017; Kim et al. 2022). BTHs also mark-
edly increased the activities of hepatic cytochrome P450 
monooxygenases, UDP-glucuronosyltransferase, and GST 
in male Sprague–Dawley rats after 5 days of exposure (Seo 
et al. 2000). However, there is still little known about the 
effects on human health.

In this study we observed negative association between 
1M-BTR and GGT. GGT (γ-glutamyl transferase) is a gly-
cosylated protein that catalyses the transfer of the γ-glutamyl 
moiety from glutathione (GSH) or glutathione-conjugates to 
acceptors like amino acids and dipeptides. It is critical for 
maintaining GSH and cysteine homeostasis (Barrios et al. 
2001; Chang Jean et al. 2002; Zhang & Forman 2009). Ele-
vated serum GGT activity is an adaptive response against 
oxidative and toxic stress, and it has been conventionally 
considered a clinical marker of liver diseases (Zhang & For-
man 2009). A positive association between GGT and levels 
of hepatotoxic pollutants in humans have been reported fre-
quently (Costello et al. 2022; Farzan et al. 2016; Omoike 
et al. 2021). Besides GGT being a marker of toxicant-related 
oxidative stress, it has also been suggested that serum 
GGT may indicate chronic low-level inflammation (Farzan 
et al. 2016). Moreover, GGT is inversely associated with 
serum concentrations of antioxidants such as α-carotene, 
β-cryptoxanthin, zeaxanthin, lycopene, and vitamin C (Lim 
et al. 2004). Hence, we speculate that serum GGT levels 
might represent the overall body capacity for the metaboliza-
tion and excretion of BTs (and xenobiotics in general), which 
is more effective in individuals with lower serum GGT com-
pared to individuals with higher serum GGT, which might 
indicate unfavourable conditions such as chronic inflamma-
tion or a lack of antioxidants. Despite the potential of BTs 
to cause hepatotoxicity and oxidative stress observed from 
experimental studies, no further associations were detected, 
which might be due to the lack of sensitivity of the chosen 
biomarkers and/or the relatively low exposure levels. More 
sensitive molecular biomarkers need to be investigated in 
the future in order to understand hidden mechanisms and 
assess associated liver health risks. Moreover, sex-related 
differences in the adverse effects of BTs, which have been 
discussed and reported previously (Cao et al. 2023; Liang 
et al. 2014; Zhou et al. 2020), might also be a reason for the 
lack of significant associations in our male study population.

Due to mostly polar structures, BTs and their potential 
metabolites are likely to be directly excreted from urine. 
However, little is known about BT pharmacokinetics. Major 

sources of BT exposure for the general population are con-
sidered to be drinking water (Janna et al. 2011; LeFevre 
et al. 2017; van Leerdam et al. 2009; Wang et al. 2023), 
indoor and outdoor dust (Maceira et al. 2020; Wang et al. 
2013), and diet (Castro et al. 2023b; LeFevre et al. 2017). 
Additional exposure through the skin from clothing contain-
ing benzotriazoles has also been reported (Liu et al. 2017). 
Estimated daily intakes calculated for the abovementioned 
exposure sources are reported in picograms up to tens of 
nanograms per kilogram of body weight (Castro et al. 2023b; 
Maceira et al. 2020; Wang et al. 2013, 2023), which favours 
the best-case scenario with the median EDI 140 ng/kg of 
b.w./day. However, two major uncertainties with respect to 
BT exposure and pharmacokinetics need to be considered. 
Firstly, due to unknown pharmacokinetics, the estimated 
daily intake model based on urinary levels of free or conju-
gated forms of BTs cannot account for the quick degradation 
of BTs in the body after ring opening and the formation of 
ring scission products. Hence, the risk of underestimation is 
higher in the best-case scenario compared to other scenarios 
because it assumes that 90% of BT intake is excreted via 
urine in free or conjugated forms. Secondly, dietary expo-
sure might be a significant source of BTs for humans, due to 
the contamination of aquatic ecosystems and the irrigation 
of the agricultural fields with contaminated water. However, 
only limited information is available regarding this expo-
sure pathway for humans (Castro et al. 2023a, b; LeFevre 
et al. 2017). Moreover, the available human exposure stud-
ies didn´t measure 1M-BTR, which, as we suggested above, 
should be considered due to its presence in the environment 
as a potential product of microbial degradation (Alotaibi 
et al. 2015; Huntscha et al. 2014; Liu et al. 2011).

One of the strengths of the current study is that it fills a 
gap in understanding of BT exposure profiles in Czech men, 
with a special focus on firefighters. In particular, it sheds 
new light on exposure predictors as well as the associations 
with liver function (5 biomarkers), serum lipids (2 biomark-
ers), and oxidative stress (1 biomarker). In fact, this is the 
first study of its size in Europe, providing valuable insights 
into BT exposure in this region and demographic group. Fur-
thermore, we report the levels of 1M-BTR in human urine 
for the first time and suggest the use of this compound for 
human biomonitoring.

In terms of limitations, the relatively small sample size 
and homogeneity of the study population need to be taken 
into account, because they determine the statistical strength 
of the tests and the ability to draw firm conclusions as well 
as to make generalisations about the whole Czech popu-
lation. Although the models presented were controlled for 
confounding factors, residual bias by unmeasured factors 
cannot be excluded. Single spot urine samples were used 
for analyses, which, due to unknown pharmacokinetics, can 
potentially lead to additional variability in the measured 
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concentrations. Lastly, the employed biomarkers of liver 
function and serum lipids are used as clinical biomarkers of 
deteriorating cardiovascular conditions; hence, the use of 
more sensitive biomarkers would probably be better for the 
exploration of potential adverse effects of BTs in the healthy 
and physically active male population.

Conclusion

In conclusion, 6 BTRs and 2 BTHs were measured in 165 
male urine samples from Czechia, the results providing the 
first insights into BT exposure in central Europe. Exposure 
to BTs was found to be highly prevalent among study popu-
lation, and 1M-BTR was suggested as a new biomarker of 
BT exposure due to its high abundance in both urine as well 
as the environment. Within this study, associations between 
exposure to BTs and biomarkers of liver function, serum 
lipids, and oxidative stress were also assessed for the first 
time and the analyses did not reveal any strong associations. 
This work provides the basis for a deeper understanding of 
human BT exposure in Europe and its associations with liver 
function. Additional studies are warranted, especially in the 
areas of pharmacokinetics of BTs, dietary exposure, and 
effects on human health.
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