D 2023

Why is the winner the best?

EISENMANN, M., A. REINKE, V. WERU, M. D. TIZABI, F. ISENSEE et. al.

Basic information

Original name

Why is the winner the best?

Authors

EISENMANN, M., A. REINKE, V. WERU, M. D. TIZABI, F. ISENSEE, T. J. ADLER, S. ALI, V. ANDREARCZYK, M. AUBREVILLE, U. BAID, S. BAKAS, N. BALU, S. BANO, J. BERNAL, S. BODENSTEDT, A. CASELLA, V. CHEPLYGINA, M. DAUM, M. DE BRUIJNE, A. DEPEURSINGE, R. DORENT, J. EGGER, D. G. ELLIS, S. ENGELHARDT, M. GANZ, N. GHATWARY, G. GIRARD, P. GODAU, A. GUPTA, L. HANSEN, K. HARADA, M. HEINRICH, N. HELLER, A. HERING, A. HUAULME, P. JANNIN, A. E. KAVUR, O. KODYM, Michal KOZUBEK (203 Czech Republic, belonging to the institution), J. LI, H. LI, J. MA, C. MARTIN-ISLA, B. MENZE, A. NOBLE, V. OREILLER, N. PADOY, S. PATI, K. PAYETTE, T. RAEDSCH, J. RAFAEL-PATINO, V. Singh BAWA, S. SPEIDEL, C. H. SUDRE, K. VAN WIJNEN, M. WAGNER, D. WEI, A. YAMLAHI, M. H. YAP, C. YUAN, M. ZENK, A. ZIA, D. ZIMMERER, D. AYDOGAN, B. BHATTARAI, L. BLOCH, R. BRUENGEL, J. CHO, C. CHOI, Q. DOU, I. EZHOV, C. M. FRIEDRICH, C. FULLER, R. R. GAIRE, A. GALDRAN, A. Garcia FAURA, M. GRAMMATIKOPOULOU, S. HONG, M. JAHANIFAR, I. JANG, A. KADKHODAMOHAMMADI, I. KANG, F. KOFLER, S. KONDO, H. KUIJF, M. LI, M. LUU, T. MARTINCIC, P. MORAIS, M. A. NASER, B. OLIVEIRA, D. OWEN, S. PANG, J. PARK, S. PARK, S. PLOTKA, E. PUYBAREAU, N. RAJPOOT, K. RYU, N. SAEED, A. SHEPHARD, P. SHI, D. STEPEC, R. SUBEDI, G. TOCHON, H. R. TORRES, H. URIEN, J. L. VILACA, K. A. WAHID, H. WANG, J. WANG, L. WANG, X. WANG, B. WIESTLER, M. WODZINSKI, F. XIA, J. XIE, Z. XIONG, S. YANG, Y. YANG, Z. ZHAO, K. MAIER-HEIN, P. F. JAEGER, A. KOPP-SCHNEIDER and L. MAIER-HEIN

Edition

Vancouver, 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), p. 19955-19966, 12 pp. 2023

Publisher

IEEE COMPUTER SOC

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

RIV identification code

RIV/00216224:14310/23:00133939

Organization unit

Faculty of Science

ISBN

979-8-3503-0129-8

ISSN

UT WoS

001062531304027

Keywords in English

cell microscopy; Medical and biological vision

Tags

International impact, Reviewed
Změněno: 24/4/2024 03:12, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.