J 2024

Remobilization of HFSE, Y, and REE during Diagenetic Alteration of Heavy Minerals in Sandstones from the Chvalčov Site, Flysch Belt of the Outer Western Carpathians, Czech Republic

DOLNÍČEK, Zdeněk, Michaela KREJČÍ KOTLÁNOVÁ, Jana ULMANOVÁ and Jiří SEJKORA

Basic information

Original name

Remobilization of HFSE, Y, and REE during Diagenetic Alteration of Heavy Minerals in Sandstones from the Chvalčov Site, Flysch Belt of the Outer Western Carpathians, Czech Republic

Authors

DOLNÍČEK, Zdeněk (203 Czech Republic), Michaela KREJČÍ KOTLÁNOVÁ (203 Czech Republic, belonging to the institution), Jana ULMANOVÁ and Jiří SEJKORA (203 Czech Republic)

Edition

Minerals, MDPI, 2024, 2075-163X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10504 Mineralogy

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.500 in 2022

Organization unit

Faculty of Science

UT WoS

001152408900001

Keywords in English

diagenetic alteration; heavy minerals; sandstone diagenesis; ilmenite alteration; garnet dissolution; HFSE mobility; REE mobility; TiO2 minerals; apatite; Ra & ccaron;a Unit

Tags

Tags

International impact, Reviewed
Změněno: 11/4/2024 10:59, Mgr. Marie Šípková, DiS.

Abstract

V originále

An in situ electron microprobe study of detrital minerals yielded important insights into the diagenetic history of the Cretaceous-to-Paleogene flysch sandstones from the Chvalčov site, Rača Unit, Flysch Belt of the Outer Western Carpathians. Detrital titanite and a Fe-Ti mineral (probably ilmenite) were almost completely altered to TiO2 minerals, which also newly crystallized in intergranular spaces of sandstone. Brookite, anatase, and, exceptionally, rutile were identified by Raman spectroscopy. Authigenic TiO2 phases show complex composition with occasionally elevated contents of Fe, Nb, Zr, V, Sc, Cr, Al, Y, and/or P, which were likely sourced from altered neighboring heavy minerals. In addition, rare authigenic LREE- and Y-enriched apatite rims were observed on detrital apatite. The remobilization of REE, Y, and HFSE was likely mediated by acidic early diagenetic fluids enriched in fluoride and sulfate anions. The superimposed formation of calcite cement was associated with the dissolution of detrital garnet, feldspars, and quartz. The compositions of detrital apatite and garnet (Alm60-82Prp4-30Sps0-24Grs0-19) are comparable with those from adjacent parts of the Flysch Belt. Detrital rutile is enriched in Nb, V, Cr, and Zr. Our study illustrates the intensity of diagenetic alteration of detrital minerals in flysch sandstones as well as the usefulness of in-situ electron-microprobe investigations for the recognition of processes influencing heavy minerals in diagenetically altered sediments.