J 2011

Invariant Einstein metrics on generalized flag manifolds with two isotropy summands

ARVANITOYEORGOS, Andreas and Ioannis CHRYSIKOS

Basic information

Original name

Invariant Einstein metrics on generalized flag manifolds with two isotropy summands

Authors

ARVANITOYEORGOS, Andreas and Ioannis CHRYSIKOS

Edition

Journal of the Australian Mathematical Society, Cambridge University Press, 2011, 1446-7887

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 0.422

UT WoS

000293659300008

Keywords in English

Einstein manifold; homogeneous space; generalized flag manifold; isotropy representation; highest weight; Weyl's formula; bordered Hessian

Tags

Tags

International impact, Reviewed
Změněno: 17/4/2024 09:36, Mgr. Marie Šípková, DiS.

Abstract

V originále

Let M=G/K be a generalized flag manifold, that is, an adjoint orbit of a compact, connected and semisimple Lie group G. We use a variational approach to find non-Kähler homogeneous Einstein metrics for flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.