Detailed Information on Publication Record
2013
Proving isometry for homogeneous Einstein metrics on flag manifolds by symbolic computation
ARVANITOYEORGOS, Andreas, Ioannis CHRYSIKOS and Yusuke SAKANEBasic information
Original name
Proving isometry for homogeneous Einstein metrics on flag manifolds by symbolic computation
Authors
ARVANITOYEORGOS, Andreas, Ioannis CHRYSIKOS and Yusuke SAKANE
Edition
Journal of Symbolic Computation, Elsevier Science Ltd, 2013, 0747-7171
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.709
UT WoS
000318321800005
Keywords in English
Homogeneous manifold; Einstein metric; Generalized flag manifold; Algebraic system of equations; Gröbner basis; Lexicographic order
Tags
Tags
International impact, Reviewed
Změněno: 17/4/2024 09:32, Mgr. Marie Šípková, DiS.
Abstract
V originále
The question whether two Riemannian metrics on a certain manifold are isometric is a fundamental and also a challenging problem in differential geometry. In this paper we ask whether two non-Kähler homogeneous Einstein metrics on a certain flag manifold are isometric. We tackle this question by reformulating it into a related question on a parametric system of polynomial equations and answering it by carefully combining Gröbner bases and geometrical arguments. Using this technique, we are able to prove the isometry of such metrics.