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Abstract 
While the potential of personalized education has long been emphasized, the practical 
adoption of adaptive learning environments has been relatively slow. Discussion about 
underlying reasons for this disparity often centers on factors such as usability, the role 
of teachers, or privacy concerns. Although these considerations are important, I argue 
that a key factor contributing to this relatively slow progress is the inherent complexity 
of developing adaptive learning environments. I focus specifically on the modeling 
techniques that provide the foundation for adaptive behavior. The design of these 
models presents us with numerous challenges, nuances, and trade-offs. Awareness of 
these challenges is essential for guiding our efforts, both in the practical development 
of our systems and in our research endeavors. 
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Introduction 

Research on personalized education primarily centers on its potential and the tech­
niques employed to achieve adaptive behavior (Kabudi et al., 2021; Maghsudi et al., 
2021; Bhutoria, 2022). However, the current adoption of adaptive learning environ­
ments remains relatively limited. Although there are learning environments with a large 
user base, their scope of application is smaller than for other types of personalization 
(e.g., recommendation systems), and their adaptivity is often quite limited compared 
to the visions outlined in research papers. When addressing concerns regarding the use 
of artificial intelligence in education and the factors contributing to the slow adaption, 
issues like the role of teachers, usability, safety, and privacy often take the spotlight 
(Khosravi et al., 2020; Cukurova et al., 2023; Rizvi, 2023). 
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However, it is plausible that another, more fundamental obstacle hinders the 
widespread adoption of adaptive learning environments: the development of effec­
tive, large-scale adaptive systems is genuinely challenging. While research reports 
tend to emphasize their achievements and offer solutions to specific challenges, there 
are many obstacles and nuances that are not obvious from the current literature and 
complicate the development. 

The objective of this paper is to specifically highlight the challenging aspects of 
developing adaptive learning environments and to collect them in one place. The 
intention is not to convey pessimism but rather to serve as a cautionary note for 
designers of learning environments. The aim is to provide them with insights into the 
potential obstacles they may encounter and to help them set realistic expectations. 
The paper also aims to assist researchers by identifying aspects that warrant greater 
attention and more research efforts. 

This paper draws extensively from my personal experiences in the field. I have 
been involved in the design and development of adaptive learning environments for 
over a decade, starting with small-scale academic projects, which progressed into 
a widely used platform (Umíme system used by over 15% of Czech schools). The 
list of issues presented here is not intended to be exhaustive; it is influenced by my 
own experiences. Due to personal experience, I know that these are not hypothetical 
academic issues; instead, they are all real challenges that we have encountered and 
had to address at various points in our work. I use the experience to illustrate the 
discussed issues on specific examples from several educational domains, particularly 
mathematics, programming, and language learning. 

In order to maintain a clear focus, I focus on issues related to modeling. The 
development of adaptive learning environments is a comprehensive undertaking, 
encompassing various facets such as content authoring, model and algorithm design, 
user interface development, and teacher support. While challenges are present in many 
of these aspects, the modeling component is the most hidden and susceptible to unex-
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Fig. 1 Simplified depiction of a learning environment and its context. The focus of this paper is on design 
issues, particularly on the modeling part of the learning environment 
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pected difficulties. Figure 1 offers a simplified overview of the learning environment's 
structure, highlighting the specific areas that are the central focus of this paper. 

Setting the Scene 

To make the following discussion of challenges and nuances more understandable, I 
will start with the description of a basic setting of an adaptive learning environment, 
examples of several typical tasks and modes of interaction, and a summary of the basic 
methods to achieve adaptivity. There are many different specific types of adaptive 
learning environments. My aim is to describe a relatively typical and basic setting; 
even this base case will be sufficient to illustrate numerous challenges. I also give an 
outline of the challenges and trade-offs that are then discussed in more detail in the 
following sections. 

Expected Behavior 

A typical adaptive learning environment may focus on a domain like mathematics 
or language learning. Minimal adaptive behavior involves adaptation with respect to 
cognitive skills, i.e., providing guidance and feedback appropriate to the student's 
current knowledge. 

The environment should also provide students with clear goals and visualization 
of progress towards these goals, e.g., in the form of a learning dashboard Bodily and 
Verbert (2017). The visualization of progress should be available not just for students 
but also for their teachers and parents. Additionally, the environment may also support 
personalization with respect to their interests, affect, or meta-cognition. 

Within an adaptive learning environment, interactive tasks play a key role. These 
tasks support student learning and simultaneously generate evidence about student 
knowledge. This evidence is then utilized to guide the adaptive behavior of the system. 
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The tasks can have many different forms (Pelanek, 2020a); Fig. 2 provides several 
examples. The figure also illustrates various domains that I will reference during the 
discussion: language learning, mathematics, and programming. 

Modeling Basics 

To provide personalization, a learning environment needs three models (as illustrated 
in Fig. 1). 

- A student model provides an abstraction of a student that serves as a basis for 
adaptive decisions; typically, the model has the form of variables that describe a 
student's state (e.g., cognitive skills, affective state, interests). 

- A domain model provides an abstraction of the domain to be learned, particularly 
an organization into learning units and a description of relations between these 
units. 

- A pedagogical model specifies the personalization strategy, i.e., how the informa­
tion captured in the student model and the domain model should be translated into 
actions of the environment. 

The terminology in education technology varies quite widely (Pelanek, 2022). 
Specifically, the pedagogical model is often described using different terms, e.g., 
"instructional strategy" or "recommendation algorithm." Even though they may not 
be explicitly called "models," any adaptive learning environment needs to have these 
three components in some form. 

A concrete realization of the modeling for mathematics may look something like 
this: 

- We define individual knowledge components, e.g., greatest common divisor, addi­
tion of fractions, and linear equations. For each of these knowledge components, 
we create specific tasks (like the ones illustrated in Fig. 2). 

- To create a domain model, we specify the mapping of tasks to knowledge compo­
nents and define prerequisite relations among knowledge components. 

- As a student model, we use one of the models of student knowledge (Pelanek, 
2017), e.g., the standard Bayesian Knowledge Tracing model, which estimates the 
probability of a student's mastery based on the sequence of answers. 

- Into the pedagogical model, we incorporate mastery learning driven by the esti­
mates of the student model and personalized recommendations based on mastered 
skill and prerequisite relations. 

These steps do not seem difficult to realize, and one may hope that they will quickly 
lead to an effective adaptive learning environment. In the rest of the paper, I will go 
through a variety of reasons why this impression is misleading. 

Outline of Challenges 

Table 1 provides an outline of challenges that are discussed in more detail in the 
following sections. The table gives a concise formulation of the core challenge; the 
discussion in the text then provides a more detailed description and specific examples. 
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Table 1 Outline of modeling challenges discussed in this paper 
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Data Biases 

Missing Data: Attrition 
Bias 

Missing Data: Unfinished 
Attempts 

Ordering Bias 

Aberrant Student Behav­
ior: Cheating and Guessing 

Feedback Loops 

Claryfing the exact meaning of modeling terms. 

Claryfing the exact meaning of numerical values in skill 
models. 

Choosing modeling approach for the case of the practice 
of the same topic using different forms of interaction. 

Deciding which observational data to use; balancing a 
trade-off between observational data complexity and model 
complexity. 

Choosing an appropriate approach to model comparision 
(evaluation metric, details of evaluation methodology). 

Choosing an appropriate approach to model relations 
among knowledge components; deciding which specific 
relations to include in the model. 

Balancing trade-offs between advantages of different 
approaches to dealing with tasks that require multiple stu­
dent skills. 

Balancing a trade-off between precision of models and 
practical requirements on their usage. 

Dealing with the distinction between procedural and 
declarative knowledge, which is potentially important yet 
not clear-cut. 

Choosing most relevant instructional strategies for a par­
ticular setting; combining various strategies in coherent 
manner. 

Finding a suitable compromise model when trying to 
achieve several aims. 

Setting parameter values for instructional strategies with­
out the existence of a clear optimization objective. 

Dealing with data influenced by attrition bias. 

Choosing suitable treatment of students' unfinished 
attempts. 

Dealing with data influenced by ordering bias. 

Detecting aberrant behaviors of students; taking these 
behaviors in account while analyzing data. 

Dealing with data influenced by feedback loops; reducing 
impact of feedback loops on collected data. 
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These challenges are not insurmountable. In many cases, related research or partial 
guidance can be found to address these challenges. Nevertheless, I believe that the 
outlined challenges represent genuine obstacles to the practical development of effi­
cient learning environments. Even when relevant research exists, it often takes various 
forms, such as the need to combine foundational insights from cognitive science about 
student learning with the appropriate application of statistical models and methodolog­
ical approaches from machine learning. It is often hard to combine information from 
different sources and translate existing findings into practical design decisions. For 
instance, extensive research exists on the topics of forgetting and spaced repetition; 
however, much of this research primarily focuses on the outcomes of isolated and 
controlled experiments conducted in laboratory settings. In the context of adaptive 
learning environments, the challenge lies in adapting and implementing spaced repe­
tition within a much more intricate and dynamic educational setting. 

The primary difficulty in developing adaptive learning environments, however, does 
not stem from any isolated challenge but rather from their intricate interplay. It is not 
reasonable to select some of the challenges and to focus on their exhaustive treatment 
while disregarding others. If the development effort ignores some of the challenges 
or addresses them in some naive, baseline fashion, the efficiency of the learning envi­
ronment can be significantly undermined. 

Trade-offs 

Before delving into individual challenges, I would like to discuss a recurring theme that 
complicates the design of adaptive learning environments: the need to make trade-offs 
without clear guidance on how to do so. Any practical application of adaptive learning 
is constrained by limited resources, e.g., time, money, and people. While these con­
straints may vary significantly among environments, they always exist. Consequently, 
it is important to consider the cost-effectiveness of different development steps and to 
choose suitable trade-offs. 

This aspect is not, of course, specific to the design of adaptive learning environ­
ments. Trade-offs and limitations by constraints are present in any endeavor. What 
distinguishes dealing with trade-offs in the design of educational technology is the 
absence of guidance for making these trade-offs. While there is extensive research in 
learning science and many studies of previously developed educational technologies, 
the published research revolves around questions like "Does an approach X improve 
student learning?" While these inquiries are scientifically valuable, they do not provide 
sufficient guidance for the practical design process. The fact that an approach X can 
enhance student learning does not automatically mean that it should be implemented. 
Another approach Y may yield slightly smaller improvement while being much more 
easily realizable; in such a case, Y should often get a priority. Designers of learning 
environments face many such trade-offs and must make decisions for which there is 
currently limited guidance. 
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Student Model 

The goal of a student model is to provide an abstract representation of a student's state 
that is then used by a pedagogical model to guide the adaptive behavior of a system. 
The key type of modeling is concerned with cognitive skills. It may be useful to model 
many aspects of a student state, including affect, motivation, or meta-cognition, but it 
makes sense to focus on these only once we have a reasonable model of skills. Since 
even skill modeling is full of challenges, I focus primarily on this aspect. 

Exact Meaning of Skill 

Research papers on student modeling are often concerned primarily with the descrip­
tion of algorithms and their evaluation without specifying in detail what they mean by 
"skill". In fact, it is surprisingly tricky to properly clarify the meaning of this notion, 
which is central to student and domain modeling. 

One confusing aspect is terminology: different authors use different terms, some­
times as synonyms, sometimes with different shades of meaning. For the term skill, 
other closely related ones are "knowledge component" or "concept" (Pelanek, 2022; 
Koedinger et al., 2012). 

The notion of skill links student models and domain models, e.g., greatest common 
divisor is some part of arithmetic and also some specific aspect of student knowledge. 
This linking is naturally (and often implicitly) used in many student models. But it also 
creates potential confusion. What exactly do we mean by "skill"? Skill may reference 
a learning unit (something independent of individual students) or student knowledge 
(something specific to individual students). Even within these two, there are several 
possible specific meanings. 

When considering skill as referring to student knowledge, it can have at least two 
distinct interpretations. We may refer to skill as a latent construct: "what Jane knows 
about the addition of fractions." This is the aspect that we genuinely care about, i.e., the 
actual student learning. However, this latent construct is not something we can directly 
work with. Alternatively, we can work with skill as a model estimate - a quantitative 
representation of a student's proficiency. For example, when we state that "Jane's skill 
is 0.8," we are essentially saying that a model estimates an 80% likelihood that Jane 
is able to add two fractions. 

When considering skill as a learning unit, it can also have several specific meanings. 
Skill can be interpreted as a set of rules, such as a procedural description of rules to 
add fractions, along with potential misconceptions related to the process. Alternatively, 
skill can simply denote a collection of specific tasks. 

In the context of this paper, I employ the term knowledge component when dis­
cussing learning units or components within a domain model and the term skill when 
referencing student knowledge. 
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Exact Meaning of Skill Estimates 

Even when considering skill estimates within student models, the exact meaning is 
nuanced (Pelanek, 2018a). The skill estimates typically take the form of a single 
number, e.g., for a Jane and addition of fractions, the skill estimate is 0.8. What is the 
exact meaning of this estimate? There are two principal interpretations: 

- The value expresses the uncertainty of a model estimate (while we assume a binary 
latent state of knowledge). 

- The number expresses the degree of knowledge (while we assume a continuous 
spectrum of knowledge). 

The first approach is meaningful for skills that take the form of rules (like the 
addition of fractions), where the assumption of a binary latent state of knowledge 
is reasonable - it makes sense to talk about 80% chance that Jane knows how to 
add fractions. For factual knowledge (like vegetable vocabulary), however, it is more 
meaningful to use interpretation "Jane's knowledge covers 80% of vegetable vocab­
ulary." Unless we use skills of very fine granularity, most skills are somewhere in 
between rules and factual knowledge, and thus, it would be useful to quantify both the 
uncertainty and degree of knowledge. This can be done using Bayesian modeling; see 
(Pelanek, 2018a) for a specific proposal. However, such a type of modeling increases 
the computational complexity of estimation and is not commonly used. 

There are thus several approaches that a designer of a learning environment can 
use: 

- assume binary latent state even though it is, for some skills, a simplification, and 
use models that quantify the uncertainty of the estimate, 

- assume a more fine-grained spectrum of knowledge without quantifying uncer­
tainty, 

- use a more complex model that addresses both uncertainty and degrees of knowl­
edge but brings higher implementation and computational complexity. 

This is a typical trade-off situation without a clear solution. Each of these approaches 
has its advantages and disadvantages. The proper choice depends on the circumstances, 
including the type of content, the available resources, and the required model precision 
for a personalization strategy that uses the model estimates. 

Multiple Forms of Practice 

Learning environments can offer students various modalities of practice to reinforce 
the same topic; Table 2 provides several specific examples. Incorporating diverse forms 
of practice has several advantages, e.g., it also enables better scaffolding of difficulty 
during learning and leads to more diverse and attractive practice. 

Unfortunately, from the perspective of skill modeling, it leads to complications. 
Should different forms of practice on the same topic be considered the same skill or 
different skills? Simple, naive approaches are inadequate in addressing this matter. 
Treating various practice forms of practice as a single skill is clearly a significant 
oversimplification - abilities such as word recognition and spelling display are not 
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Table 2 Examples of multiple forms of practice for the same topic 

second language vocabulary word recognition through multiple-choice questions 

word spelling via a drag-and-drop interface for arranging letters 

unrestricted word recall 

one-digit multiplication scaffolded practice with grid illustration 

free-form responses without time constraints 

selected responses under time pressure, embedded within a gamified context 

for loops in programming multiple-choice questions about code behavior 

scaffolded practice with hints on syntax 

independent creation of code 

completely aligned. For example, for Czech students, the term 'broccoli' is easy to 
recognize but challenging to spell correctly, whereas 'tomato' is relatively easy to 
spell yet often confused with 'potato' in multiple-choice questions. Modeling using 
entirely independent skills is an oversimplification as well. 

It is possible to use modeling using correlated skills, e.g., using Bayesian networks 
(Käser et al., 2017) or an extension of the Elo rating system (Pelänek et al., 2017). 
However, it cannot be done easily with the most commonly used student modeling 
approaches. 

Observational Data Used for Skill Modeling 

Student modeling methods estimate skills based on the observed data about student 
performance while solving tasks. The most common student modeling approaches 
utilize only the binary information about the correctness of answers (Pelänek, 2017). 
This is a reasonable foundation: the correctness of answers is readily available in many 
settings, whereas other types of observations may differ based on context. 

However, there are many other types of observational data that can be easily mea­
sured and carry potentially useful information about student knowledge: 

- response times, 
- specific values of incorrect answers, 
- information about the process of constructing the answer, e.g., sequences of moves 

or clicks in an interactive task, 
- timestamps or information processed based on timestamps (part of day, time inter­

vals between answers), 
- use of instructional materials, e.g., video views, 
- contextual information, e.g., preceding activities. 

Here, we face a typical design trade-off. We need to balance between the breadth of 
considered data sources, the depth of processing (complexity of used student models), 
and practical restrictions (computational requirements, implementation complexity). 
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Fig. 3 Simplified illustration of the trade-off between model complexity and observational data complexity 

Fig. 3 illustrates the key choice: we need to balance the complexity of used models 
and observational data. 

Most research papers focus on model complexity while keeping the used obser­
vational data simple - this is a natural choice for research reports as it makes them 
more widely relevant; approaches that utilize specific observational data are necessar­
ily tailored towards a specific application. For a practical application, however, it often 
makes sense to use a wide range of observational data while keeping the modeling 
simple, e.g., the use of statistics like exponential moving average. This approach is 
more easily applicable than complex models, and, thanks to richer input data, may 
produce better student models. 

The practical feasibility of using both complex models and complex observational 
data is disputable. The use of complex, interpretable models tailored towards specific 
data is prohibitively expensive as it requires expert knowledge and is time-consuming. 
An alternative is to use black-box models based on deep learning (Piech et al., 2015; 
Minn et al., 2018); this avenue is currently explored in research papers, which, however, 
typically do not address issues necessary for the practical deployment of models in 
adaptive learning settings. I also consider the use of black-box models for student 
modeling highly risky due to the presence of biases in underlying data (Section 6). 
While the boundary of feasibility is disputable and will certainly extend in the future, 
the necessity of making trade-offs will probably remain for a long time. 

Measuring Model Performance 

The main point of student models is to try to estimate the latent student state. The 
quality of these models cannot be evaluated directly - the ground truth that we try to 
model is, by definition, latent and thus not directly observable. To evaluate models, 
we thus have to use proxy measures of model quality. Probably the most commonly 
used approach to the evaluation of student skill models is the evaluation of predictive 
accuracy for the next answer. Doing evaluation using just predictive accuracy is insuf-
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ficient; see González-Brenes and Huang (2015) for more discussion and proposals for 
additional methods. 

Even when we consider just the basic method for measuring model predictive 
accuracy, realizing it properly is more complex than it may seem. One issue that is not 
much discussed but rather important is the cross-validation approach. As is common 
in machine learning, student models are trained using one subset of data and evaluated 
on an independent subset of data; this train-test split can be done in several ways, e.g., 
in student-level, population-level, task-level, or with respect to time. The predictions 
can be computed statically based only on the train set or updated dynamically after 
each observation in the testing set. There is no universally correct approach to this 
choice (Pelánek, 2018b). 

Another non-trivial issue is the choice of metrics. To quantify the model perfor­
mance, we express the quality of predictions using a single number, e.g., Root Mean 
Square Error (RMSE) or Area Under the ROC Curve (AUC); there is no objectively 
correct metric to use and the choice of different metrics may lead to different results 
in model comparison (Pelánek, 2015). Moreover, the results of the model comparison 
can be influenced by such seemingly minuscule details as the approach used to aver­
aging. Do we compute RMSE values for each student and then compute their average? 
Or do we compute RMSE directly over all predictions? Each of these approaches has 
its advantages and disadvantages, and each can produce different results (Pelánek, 
2018b). 

Moreover, the choice of prediction target is also unclear. Most commonly, the 
evaluation of student models focuses on predicting only the binary correctness of 
answers. However, richer data on answers are typically available, e.g., response times 
or specific answers. Incorporating these into prediction evaluation can lead to more 
valid predictions, e.g., if we care about the fluency of student knowledge, the response 
times are clearly important. However, the choice of suitable metric in this case becomes 
even more complex (Řihák, 2017). 

The challenge of proper model evaluation interacts with other challenges. When we 
compare various approaches to student or domain modeling, the differences between 
models can often be relatively small or even dependent on the used measure. Are 
such differences practically important? This is hard to tell. Researchers have offered 
arguments against the exploration of models with minor differences in predictive 
accuracy (Beck and Xiong, 2013), as well as illustrations of situations where they 
may be important (Niznan et al., 2015). There is no easy, universal rule to decide 
when do differences in predictive accuracy matter. 

Domain Model 

The domain model provides a simplified representation of the domain that the envi­
ronment tries to teach. The core of domain modeling lies in modeling knowledge 
components, which directly tie it with student modeling. Other aspects of domain 
models, like knowledge component relations, are used by the pedagogical model to 
implement adaptive behavior. 
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Knowledge Component Relations 

Student skill with respect to individual knowledge components is not independent -
student performance with respect to one knowledge component is related to perfor­
mance on other knowledge components; the practice should thus be sequenced in a 
suitable order with respect to knowledge component dependencies. We thus need to 
model their relations. 

The basic type of relation that we need to model is generalization-specialization. 
For example, knowledge components simplifying fractions, addition of fractions, and 
multiplication of fractions are all specializations offractions. Beyond the use in student 
modeling and recommendation algorithms, this relation is also typically used for pre­
sentation purposes (listing of all topics in the system, navigation). The basic approach 
to modeling a generalization-specialization relation is using a tree, i.e., creating a 
taxonomy of a given learning domain (Pelanek, 2020b). 

Modeling generalization-specialization using trees, however, leads to simplifica­
tions and omissions. Consider, for example, equations with fractions. This knowledge 
component naturally belongs both under equations and fractions; when using trees, 
we have to choose only one of these as a parent. A natural solution is to model 
generalization-specialization relations using a more general model: a directed acyclic 
graph or even a full-fledged ontology, which captures other types of relations as well. 
However, with these more complex models, all algorithms that use the relation become 
more complex. It is not clear whether such a complication is worthwhile; while knowl­
edge components like equations with fractions clearly exists and deserve more parents, 
most skills can be naturally modeled using a single parent. This is a typical example 
of a trade-off that a designer of a learning environment faces. 

Another typical type of relation are "sequential" relations (prerequisites, follow-
ups). A typical example is the relation greatest common divisor —> simplifying 
fractions. Such a relation is universally useful across many learning domains and 
model applications. Unfortunately, the exact meaning of the relation cannot be stated 
in a simple, universal manner. The relation A —> B can have several distinct interpre­
tations, and each of them is natural in some context: 

- Knowledge of A is absolutely necessary for understanding B, i.e., it is not possible 
to master B without mastering A. This is common in mathematics; typical example 
would be adding fractions —> equations of fractions. 

- Knowledge of A very useful for mastering B, i.e., it is possible to master B without 
A, but knowing A clearly helps. This naturally occurs in second language grammar, 
e.g., present simple tense —> past simple tense. 

- It is common to learn A before learning B but knowledge of A does not necessarily 
directly facilitate learning B. The primary reason for the sequence is not cognitive 
but rather motivation, practical usefulness, or habit. This is typically the case of 
vocabulary learning - although there are very few strict prerequisite relations, most 
learners learn vocabulary in similar order, e.g., colors —> clothes. 

These three examples are not some clear-cut distinct categories but illustrations along 
a rather continuous spectrum. Even in mathematics, there are few completely neces-
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sary prerequisites; in many cases, the relations are somewhere between "absolutely 
necessary" and "useful." 

There are also other nuances. If we have a pair of relations A —> C, B —> C, is 
their interpretation conjunctive or disjunctive? In order to learn C, does the student 
need to know both A and B, or is one of them sufficient? In a narrowly specialized 
learning environment, these issues may have a clear answer. But in any environment 
with a wider scope, design trade-offs are necessary. 

Knowledge Component Combinations 

A domain model needs to capture the mapping between the available tasks and knowl­
edge components. A basic approach to do this is to map each task to a single knowledge 
component. Many modeling approaches, at least in their basic form, assume such 
simple mapping, e.g., the standard versions of Bayesian Knowledge Tracing or Elo 
rating system (Pelanek, 2017). In reality, however, many tasks require multiple skills. 
Evaluating an expression (5 — 3) + 6 x 2 requires knowledge of addition, subtrac­
tion, multiplication, parenthesis, and operator priorities. Programming tasks typically 
involve the usage of multiple programming concepts. 

One approach to address this is to keep the simple mapping and focus on a suitable 
choice of knowledge components. We can tag tasks according to their most complex 
element or introduce new "combined" knowledge components, e.g., combination of 
arithmetic operations, for loop with nested if 

Alternatively, we can use a modeling approach that directly supports multiple 
knowledge components per task. This mapping is often called Q-matrix (Barnes, 2005) 
and is used in approaches like the Additive Factors Model (Cen et al., 2006). This path, 
however, requires clarification of further issues, particularly the "credit assignment 
problem." If a student answers incorrectly, which skill is to be "blamed" for this mis­
take? Is the skill combination compensatory (additive), conjunctive, or disjunctive? 
These issues have been addressed in multiple research studies, e.g., (Ayers and Junker, 
2006; Koedinger et al., 2011; Gong et al., 2010; De La Torre, 2009), and there do not 
seem to be any universally applicable solutions. Moreover, the techniques used along 
these lines have been realized mostly in small-scale research studies and the methods 
used are often computationally intensive and non-trivial to scale. 

Granularity of Knowledge Components 

1 have repeatedly used addition of fractions as an example of a knowledge component. 
This example is, however, disputable. Are the task f + ^ and § + 75 really covered 
by the same student skill? Maybe we should model separately addition of fractions 
with like denominators and addition effractions unlike denominators. But what about 

1 1 C Q 

2 + 5? This task has unlike denominators but is significantly simpler than | + ^ . 
Should we introduce another knowledge component for tasks like these? 

Tasks used to practice a given skill should be sufficiently similar, i.e., the perfor­
mance on these tasks should be correlated, and there should be a transfer of learning 
between them. Research results mostly provide arguments for fine granularity of 
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knowledge components as models with fine granularity provide a better explanation 
of data and can improve student learning; Koedinger et al. (2013b) provide a specific 
example. However, from a practical point of view, fine granularity brings costs and 
disadvantages. With the use of fine-grained models, it becomes harder to manage the 
task pool, construct mappings to knowledge components, and fit model parameters. 
When used in the user interface, fine-grained models may be confusing to students, 
who expect terms commonly used in textbooks. The data may support the desirability 
of a specific knowledge component "addition of fractions with unlike denominators, 
one denominator is multiple of another, only small numbers used"; it is, however, not 
something we want to display to students. These disadvantages may, in some cases, 
outweigh the benefits of a model with a better fit of data. 

To better illustrate this point, I describe several other specific cases that I met during 
the development. In these cases, our analysis of data on student performance showed 
quite clearly that finer granularity is conceptually meaningful, but the practical merit 
of going for the finer granularity was unclear1: 

- Modular division: The cases where the dividend is smaller than the divisor (e.g., 
5-^8) are more difficult than other modular division tasks. 

- English grammar, past tense, regular verbs: Forming a past tense for words ending 
with Y (e.g., try, carry, enjoy) is more difficult than for other regular verbs. 

- English grammar, present simple vs. continuous: The use of present continuous for 
describing irritating or annoying habits is more difficult than other uses of present 
continuous. 

Differences in difficulty often serve as an indicator that a knowledge component 
could be split into two separate ones. This idea is the basis of techniques for domain 
model refinement (Koedinger et al., 2013b; Liu and Koedinger, 2017). However, there 
are multiple sources of differences in task difficulty, and it is not easy to disentangle 
them. Consider the case of basic linear equations and the following three tasks: 

A. 3x +2 = 11 
B. 4x + 16 = 40 
C. 3x +20 = 11 

The data on student performance clearly show that task A is simpler than the other 
two tasks, which have similar difficulty (the error rates are 14%, 26%, and 29%). Task 
C has a conceptual difference from task A; it involves the use of negative numbers, 
which may be meaningful to model as a separate knowledge component. However, the 
difference between A and B is mainly due to "larger numbers," and there is a smooth 
transition in difficulty between A and B, which would not be meaningful to capture 
as a separate knowledge component. 

Note that the decisions concerning granularity do, of course, depend on the specific scope of a learning 
environment. I work with a wide-ranging environment. In the context of a specialized environment (e.g., a 
tutor specialized in teaching tenses), the decisions about granularity would surely be different. 
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Procedural and Declarative Knowledge 

When dealing with procedural knowledge (e.g., addition of fractions), it is reasonable 
to represent a student's knowledge with a single skill estimate. In essence, we assume 
that individual tasks are sufficiently homogeneous and that a singular skill estimate 
can effectively capture a student's proficiency. 

On the other hand, when we consider declarative knowledge (e.g., vegetable vocab­
ulary, 3D shape names), the situation becomes more intricate. Using a single skill 
estimate is clearly a simplification - a student may know some terms while being unfa­
miliar with others. In such cases, a more precise modeling approach would involve 
assessing knowledge at the level of individual words. Nevertheless, even in the con­
text of declarative knowledge, we still need to model the structure of knowledge -
knowledge components like 3D shape names are useful, at least for organizing and 
presenting practice to students. 

This leads to another trade-off between precision and practical usability: Should 
we opt for fine-grained granularity in modeling declarative knowledge at the level of 
individual facts, or should we prefer a less precise but simpler model that consolidates 
related facts into a single skill estimate? 

Furthermore, the distinction between procedural and declarative knowledge is not 
always clear-cut. While there are clear examples like addition of fractions and vocabu­
lary knowledge, many skills naturally combine both declarative and procedural aspects. 
Consider the following examples: 

• Mathematics, area of 2D shapes: a combination of the knowledge of key terms 
and equations and the ability to apply them. 

• English grammar, the choice between a/an determiners: procedural application of 
rules combined with the factual knowledge about the pronunciation of individual 
words; an example where you need both: "[a/an] honest boy." 

• Programming, for loops in Python: procedural knowledge of program develop­
ment combined with the declarative knowledge about the syntax and details of the 
language, e.g., the fact that f o r i i n range (5 ) iterates through numbers 0 
to 4, not 1 to 5. 

Pedagogical Model 

A pedagogical model captures pedagogical strategies that guide student learning. The 
modeled strategies utilize data from a student and domain model to decide how the 
environment should interact with the student. 

The Choice of Strategies 

A key problem with the pedagogical model is the choice of focus. There are many 
pedagogical strategies that are supported by research and that we may want to include 
in the system, see, for example, Dunlosky et al. (2013). Moreover, these strategies can 
often be combined in a wide range of ways (Koedinger et al., 2013a). 
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Instructional strategies that can be included in a pedagogical model target a wide 
range of scales, ranging from hints on the level of individual steps within a task to 
recommendations of long-term learning paths. Table 3 provides examples of strategies 
along this scale. 

The table provides just sample references for illustration; there exists extensive 
research on individual strategies. This research is typically concerned with a single 
strategy in isolation; the research goal is typically to demonstrate that a given strategy 
works, i.e., that it improves learning outcomes with respect to a control group or another 
strategy of a similar type. However, when designing practical learning environments, 
we need to combine multiple strategies of different types and prioritize among them. 
This leads to questions that are hard to answer: For a given application domain, what are 
the most useful techniques? What is the relative contribution of individual strategies? 
How can we efficiently combine multiple strategies in the same environment? How do 
we resolve conflicts among strategies? An example of such conflict may be a situation, 
where a spaced repetition strategy recommends the repetition of insect vocabulary 
while personalization and novelty rules propose grammar practice on sentences from 
Harry Potter. 

Table 3 Examples of instructional strategies at various time frames with sample references 

single task (seconds-minutes) 

hints 

task scaffolding 

feedback on task performance 

personalization with respect to student interests 

sequence of tasks (minutes-hours) 

mastery criteria that decide when to stop practice 

strategies that aim to achieve appropriate task difficulty 

scaffolding strategies, e.g., gradual switching from 

worked examples to independ 

interleaving of different topics 

repeated use of a system (days-months) 

spaced repetition 

follow-up recommendations 

meta-cognive support, feedback on long-term progress 

VanLehn (2006); McBroom et al. (2021) 

Lytle et al. (2019) 

Maier and Klotz (2022) 

Walkington and Bernacki (2019) 

Käser et al. (2016); Pelánek and Řihák (2018) 

Pelánek et al. (2017) 

Ringenberg and VanLehn (2006) 

Carpenter (2014) 

Pavlik and Anderson (2008); Reddy et al. 
(2016); Cepeda et al. (2008) 

Manouselis et al. (2012) 

Arroyo et al. (2014); Bodily and Verbert (2017) 
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Balancing Multiple Aims 

As previously discussed, during student and domain modeling, we encounter numerous 
design choices and trade-offs. The entire design process is further complicated by the 
fact that the appropriate choice of student and domain model often depends on the 
instructional strategies that we aim to implement within the pedagogical model. For 
instance, when considering adaptive hints or task difficulty adjustments, we may lean 
towards a model with a higher granularity of knowledge components. On the other 
hand, for long-term strategies and navigation within the learning environment, we may 
prefer a coarse-grained model and a different organizational structure for the model. In 
principle, we could employ distinct student models for various purposes, but managing 
parallel versions of several student models can quickly become a technical nightmare. 
Choosing a compromise model is also no simple task. How should we go about making 
this choice? What criteria should guide our decision-making process? 

To make these dilemmas more concrete, let us consider specific examples. In second 
language learning, the basic dilemma is related to the procedural versus declarative 
knowledge issue discussed above. For vocabulary learning, it may be useful to have 
a model with granularity on the level of individual words and to model memory 
activation in detail, which can be used for difficulty adjustment and optimal spacing. 
For grammar practice, it may be more useful to focus the modeling on the level 
of knowledge components and their relations and their use for interleaved practice 
or follow-up recommendations. Do we use one compromise model or two separate 
models? When trying to use two separate models, we may find that the distinction 
between vocabulary and grammar is not completely clear-cut. For example, stative 
verbs, irregular verbs, and irregular plurals are closely connected to both vocabulary 
learning and grammar. 

In mathematics, using modeling with multiple knowledge components per task 
specified by a Q-matrix is often natural and may be suitable for difficulty adjustment 
and mastery learning. However, this type of model is difficult to use for navigation 
and long-term recommendations. 

In programming, we face design choices between focusing on conceptual aspects of 
tasks (programming constructs used) versus features of the used microworlds. From 
the perspective of the pedagogical strategies, the important facet is the conceptual 
aspects. However, from the perspective of feedback, navigation, and motivation, the 
salient features of tasks are also important - it is usually more understandable if the 
interface communicates in terms of these features: "you have mastered the robot clean­
up mission, now is the right time to try to draw these interesting patterns with turtle 
graphics" rather than "you should strengthen your knowledge of for loops." 

Parameter Setting and Model Evaluation 

Strategies captured in a pedagogical model require specific parameter values. The 
parameter values often need to strike a delicate balance. Mastery learning criteria 
employ mastery threshold parameters to navigate between over-practice and under-
practice (Pelánek and Řihák, 2018). Spaced repetition strategies involve parameters 
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that determine practice intervals, with optimal spacing contingent on the learning 
timeframe, for which there is no universal answer (Cepeda et al., 2008). Scaffolding 
strategies require specifying the speed of scaffolding removal. In the case of auto­
matically displayed hints, a time threshold for hint display balances between being 
"too early" (inhibiting independent thought) and "too late" (causing frustration and 
disengagement). Moreover, when the pedagogical model includes multiple strategies, 
these strategies often end up in conflict as each recommends a different action to 
take. We thus have to specify a mechanism for resolving these conflicts, e.g., by using 
parameters specifying relative priorities of strategies. 

Setting all these parameters can be challenging. While research literature offers 
valuable guidelines, the specific values almost always depend on the particular context. 
The parameter values also cannot be easily automatically optimized. The ultimate goal 
we aim to optimize is lifelong learning, a distant and indirectly measurable objective. 
We may utilize various proxies like engagement with the system or short-term learning 
gains. Yet, even these proxy measures prove quite challenging to quantify accurately, 
primarily due to data biases, as I will discuss in the next section. 

More importantly, even when we succeed in quantifying them, it would be a mistake 
to straightforwardly optimize the system based on a chosen proxy measure. Specifi­
cally, it is easy to fall into the trap of optimizing for engagement, which is relatively 
easy to measure - we may inadvertently create a learning environment that appears 
fun and engaging but sacrifices actual learning outcomes in the process. 

An alternative to relying on proxy measures involves the utilization of simulations. 
In this approach, we explore the impact of various parameter configurations on sim­
ulated students; for specific examples, see Fancsali et al. (2013); Pelänek (2018a); 
Käser and Alexandron (2023); Reddy et al. (2016). However, this method comes with 
its own drawbacks. Simulated students are, by necessity, simplifications of real stu­
dents, and the accuracy of simulation results depends on the simplifying assumptions 
employed. 

Data Biases 

The process of modeling involves working with student data. These are used to obtain 
estimates of model parameters, to evaluate and compare models, or to get action­
able insights into student behavior. Research papers often make a hidden, implicit 
assumption that the collected student data are of high quality, meaning that they have 
minimal noise and that all students engage with the system as expected (in a con­
centrated manner with the intention of learning). However, in reality, things are more 
complex. Some students may cheat or rapidly guess answers. The system itself may 
bias collected data, for instance, through attrition bias caused by the implementation 
of mastery learning. One may hope that these deviations simply add up as random 
noise, which could potentially be mitigated by gathering more data. Unfortunately, 
that is not the case. 

Note that the term "bias" has many meanings; see, for example, Mitchell et al. 
(2021); Baker and Hawn (2021) for complex discussions. Here, I discuss primarily 
"statistical biases" that are connected with technical issues concerning data collec-
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tion. Another type of bias is "societal bias," which is concerned with fairness across 
various subpopulations, e.g., race, ethnicity, nationality, and gender. This type of bias 
is important, particularly in the use of machine learning methods on an institutional 
level. In the context of adaptive learning environments and skill modeling, however, 
the key biases are of a statistical nature. 

Missing Data: Attrition Bias 

Student and domain models are fitted using data collected during the student interac­
tions with the learning environment. These data are not complete; we have observations 
only for some student-task pairs. The observed and missing data are not distributed 
randomly. 

A key problem of this type is attrition bias. The number of answers per student (both 
globally and with respect to particular knowledge components) is not constant. Some 
students attempt to solve many more tasks than others. Some students quit the practice 
early, e.g., because they already mastered the topic. Some students may practice for 
a long time, e.g., because they have poor prior knowledge of the topic or because 
they are not sufficiently concentrated. These types of students typically systematically 
differ in their knowledge, which leads to systematic bias in the collected data. 

Note that these effects may be actually a consequence of the adaptive behavior 
of the learning environment. A specific instance is the mastery attrition bias, which 
is caused by the implementation of mastery learning (Pelánek, 2018b). Researchers 
have illustrated how this bias confounds learning curves (Nixon et al., 2013) and 
proposed partial methods for alleviating it, e.g., by using disaggregation of learning 
curves (Murray et al., 2013) or mastery-aligned models (Käser et al., 2014). However, 
the specific impact of the bias is heavily dependent on a particular implementation of 
the adaptive behavior, and it cannot be addressed in any universal manner. 

Missing Data: Unfinished Attempts 

Other sources of potential biases due to missing data are connected to unfinished 
attempts. Consider a programming task. A student started solving the task, typed a few 
commands, but then abandoned it and went to practice something else. How should we 
store such interaction? How should we use it in the model fitting? The simplest solution 
is to just ignore unfinished attempts, but such an approach may create systematically 
biased data - the subpopulation that finishes a difficult programming task typically 
consists of more advanced students. 

Another naive solution is to interpret all unfinished attempts as unsuccessful ones. 
Students may open a task without serious intent to solve it, e.g., because they are just 
interested in the problem statement or do not have time at the moment to solve it; 
it would be misleading to interpret such cases as indications of students' inability to 
solve the task. There are, of course, various solutions between these two extremes, 
but it is hard to find a suitable balance that does not bring biases without requiring 
extensive tuning. 
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Ordering Bias 

One of the principles used in learning environments is the sequencing of tasks from 
easier to more challenging ones. This pedagogical approach is beneficial for students, 
as it facilitates the gradual development of students' skills. However, it comes with 
a drawback - the potential for biased data that complicates the process of parameter 
fitting. When students solve tasks in the same order, it is hard to disentangle student 
learning and increase in task difficulty. 

As a specific illustration of this issue, consider two distinct scenarios: 

• A sequence of tasks of comparable difficulty, where minimal student learning 
occurs (students have already mastered the skill or the tasks themselves do not 
facilitate significant learning). 

• A sequence of tasks carefully designed to incrementally increase in difficulty, 
effectively guiding students along a learning curve that mirrors the task complexity. 

From the perspective of the design of learning environments, the difference between 
these two scenarios is fundamental: the second one is the desirable case, while the first 
one is not. This key difference may be, however, very hard to capture in models fitted 
from student data. When all students follow an identical task sequence, the observed 
data from these two scenarios may be virtually indistinguishable. Cechak and Pelanek 
(2019) provide a specific illustration of this effect using simulation. 

Aberrant Student Behavior: Cheating and Guessing 

Much of the research on student modeling operates under the implicit assumption that 
students engage with our systems as intended, focusing on learning. Regrettably, this 
assumption does not always hold true. Students frequently exhibit aberrant behaviors, 
such as gaming the system by abusing hints (Baker et al., 2008), rapidly guessing 
answers (Wise, 2017), or even resorting to outright cheating (Ruiperez-Valiente et al., 
2017). 

Aberrant behavior has negative consequences, not just for students themselves. 
Aberrant behavior leads to biased data; it typically leads to lower response times and 
non-trivial changes in error rates of answers. When we fit student models to such data, 
these biases can have a non-trivial impact on parameter values and, consequently, also 
on any algorithms that use these models. 

One may hope that the presence of aberrant behavior basically amounts to a random 
noise, which can be overcome by collecting more data. Unfortunately, that is not the 
case. The biases caused by aberrant behavior are often systematic (non-random) and 
not uniformly distributed. 

For example, we have detected significant cheating in reading comprehension exer­
cises; cheating occurs only in the more difficult exercises, which leads to misleading 
analytics results - objectively complex exercises seem to be easier than simple ones 
(Pelanek, 2021). For rapid guessing, we detected a significant portion of rapid guessing 
in multiple-choice questions on computational thinking (which were a bit laborious), 
whereas in many other domains (like English grammar), the presence of rapid guessing 
was much lower. 
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Feedback Loops 

The issue of data biases is amplified due to the presence of feedback loops. The 
algorithms that guide adaptive environments decide what data get collected, and the 
collected data are used to fit models that are used by the algorithms. Adaptivity can lead 
to biases in data collection, and these biases can influence the behavior of adaptivity. 

Consider a specific example that illustrates the potential for a negative impact of 
such feedback loops - an interaction between student rapid guessing and an algorithm 
for mastery criteria. Our system uses a mastery criteria algorithm that utilizes an esti­
mate of the time intensity of individual tasks (Pelánek and Řihák, 2018). The presence 
of rapid guessing, concentrated in the practice of some knowledge components, led 
to smaller estimates of time intensity. This caused a slower progress towards mastery 
(since the algorithm assumed that the items in the topic were not very time intensive). 
This, in turn, led to student frustration and even more occurrences of rapid guessing. 
The consequence of this feedback loop was that for some knowledge components, the 
rapid guessing attempts comprised nearly half of all attempts, and it was not possible 
to reach mastery in a reasonable time. The problem was not very difficult to solve - we 
implemented a detector of rapid guessing and made the estimation of time intensity 
more stable. The main point is that such feedback loops are often hidden and can 
interact in unexpected ways. 

Another impact of feedback loops concerns model evaluation. When a learning 
environment uses a model to guide adaptivity, the model determines which data are 
collected and later used to evaluate its impact. This can influence the results of model 
comparison (Pelánek et al., 2016). 

Conclusions 

Finally, I want to conclude with several high-level messages that are based on the 
previous discussion. 

Be Aware of Challenges and Do Not Despair 

Acknowledging the existence of challenges can be discouraging and demotivating. 
However, to get adaptive learning environments towards wider application, we need to 
address these hidden challenges, nuances, and trade-offs. Moreover, just the awareness 
of challenges can sometimes help us to move forward with practical development. 
In the design of learning environments, we often encounter challenging problems 
that seem difficult to resolve satisfactorily. At such times, being mindful of the fact 
that there are numerous other issues that the current design overlooks can aid in 
overcoming the specific problem at hand. For instance, it is not very meaningful 
to address every nuanced aspect of modeling prerequisites at the moment when the 
learning environment completely ignores the issue of student cheating. 
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Make the Trade-offs Explicit 

Research studies often focus on optimizing specific aspects of a problem while neglect­
ing others. A common example is the pursuit of predictive accuracy of student models 
while ignoring computational requirements. I do not want to disparage such kind of 
research; it is valuable in exploring the boundaries of what is achievable and discov­
ering techniques that can later be optimized. However, it would be useful to have 
more research that explicitly takes various trade-offs into account. Such research can 
provide valuable tools and frameworks for making informed decisions in the design 
of learning environments. 

In practical development, it is not possible to avoid the issue of trade-offs. It is 
beneficial to make these trade-offs explicit. For instance, when considering various 
instructional strategies that we may wish to implement, it is useful to explicitly out­
line their expected contributions to student learning and consider the associated costs, 
which encompass implementation, content authoring, data maintenance, and compu­
tational requirements. 

Beware of Silver Bullets 

The recent advancements in artificial intelligence have generated high expectations. 
However, even considering the rapid progress in AI, it's improbable that we will 
witness swift, transformative changes in education. While deep machine learning has 
made significant strides, it may not necessarily translate into deep human learning. 

Recent progress has been mainly due to black-box methods. These methods often 
concentrate on optimizing specific cost functions. In the context of learning envi­
ronments, the real goal is fostering long-term student learning. This goal cannot be 
expressed using a readily measurable cost function. Relying on proxies that can be 
automatically optimized may lead to unintended consequences. For example, it is much 
simpler to measure student engagement than student learning. It may thus be tempting 
to use measures of student engagement as a cost function. With this approach, how­
ever, we might end up with engaging but ultimately ineffective educational solutions. 
Furthermore, there is the inclination of students to cheat or game the system and the 
presence of feedback loops. These aspects can easily wreak havoc with a black-box 
approach built to optimize a specific cost function. 

Consider Avoiding Stupidity Perspective 

The motivation behind personalized education is often described in terms of "opti­
mizing the positive aspects" such as learning, motivation, engagement, and efficiency. 
However, to make practical progress, it may be more beneficial to emphasize "mitigat­
ing the negative aspects." Many things that can go wrong in a learning environment, 
e.g., tasks may be ambiguously formulated, the learning curve may be too steep, 
teaching strategies may be implemented inefficiently, students may exploit the system 
through unanticipated uses of hints and feedback. The primary objective should be to 
prevent problems. Variations on this idea have emerged in recent literature. We have 
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called it the "avoiding stupidity perspective" (Pelanek and Effenberger, 2022), while 
Mian et al. (2019) approach the discussion by asking "What's most broken?" and 
Baker (2016) advocates for an approach termed "stupid tutoring system, intelligent 
humans". 

The practical implication of adopting this perspective is a shift in focus during the 
development of automated techniques. Rather than fixating solely on fully automated 
methods aimed at optimizing student learning, it encourages the use of human-in-
the-loop approaches that leverage modeling and data analysis to identify and rectify 
problematic system behaviors. 
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