
The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Optimizing Local Satisfaction of Long-Run Average Objectives
in Markov Decision Processes

David Klaška, Antonín Kučera, Vojtěch Kůr, Vít Musil, Vojtěch Řehák
Masaryk University, Brno, Czechia

david.klaska@mail.muni.cz, tony@fi.muni.cz, vojtech.kur@mail.muni.cz, musil@fi.muni.cz, rehak@fi.muni.cz

Abstract

Long­run average optimization problems for Markov deci­

sion processes (MDPs) require constructing policies with op­

timal steady­state behavior, i.e., optimal limit frequency of
visits to the states. However, such policies may suffer from
local instability, i.e., the frequency of states visited in a
bounded time horizon along a run differs significantly from
the limit frequency. In this work, we propose an efficient al­

gorithmic solution to this problem.

Introduction
A long­run average objective for a Markov decision process
(M D P) D is a property depending on the proportion of time
(frequency) spent in the individual states of D. Typical ex­

amples of such properties include

• the total frequency of visits to "bad" states is <0.05;
• the state frequency vector is equal to a given vector v.

The existing works on long­run average optimization (see
Related Work) concentrate on constructing a strategy a such
that the Markov chain Da obtained by applying a to D is ir­

reducible and the invariant (also called steady­state (Norris
1998)) distribution IC T achieves the objective. Unfortunately,
the existing algorithms cannot influence the local stability of
the invariant distribution along a run.

More concretely, for a given time horizon n, consider the
local frequency Freqn of states sampled from n consecutive
states along a run, starting at a randomly chosen pivot posi­

tion (we refer to Section for precise definitions). The local
stability of the invariant distribution is the probability that
Freqn stays "close" to IC T. If the local stability is low, then
the probability of achieving the considered objective locally
(i.e., within the prescribed time horizon) is also low, and this
may lead to severe problems in many application scenarios.

Example 1. Consider a system of Fig. 1 (a) that can be either
in the running (R) or maintenance (M) state. A long­run sus­

tainability of the system requires that the system is running
for 90% of time and the remaining 10% is spent on mainte­

nance. Hence, we aim at constructing a strategy a such that
la = v, where v{R) = 0.9 and v(M) = 0.1. Ideally, the
maintenance should be performed regularly, i.e., the state

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). A l l rights reserved.

M should be visited once in 10 consecutive states. That is,
Freq1Q should be equal to v with high probability.

For every y £ [0,1), the memoryless strategy av of
Fig . 1(b) satisfies I C T y = v. However, the probability of
Probav[Freq10=v] approaches zero as y —> 1. The best re­

sult is achieved for y = 0, where this probability is « 0 . 4 3 .
Hence, even the best memoryless strategy may considerably
degrade the reliability of the system.

The simple deterministic strategy n of Fig . 1(c) satis­

fies 11̂ = v and Prob'K[Freqw=v] = 1. Note that n
needs 9 memory states to "count" the repeated visits to
R before visiting M. A "tradeoff" between memory size
and the local satisfaction of the sustainability objective is
achieved by the strategy r/ of Fig . 1(d) where \ = v and
Prob'n[Freq10=i'] « 0 . 7 4 . " •

Other examples of long­run average objectives where the
local satisfaction/stability requirements rise naturally are

• critical supply delivery (see, e.g., (Skwirzynski 1981;
Lazar 1982)), where a bundle of items with limited lifes­

pan should be delivered with a given frequency / . A high
level of local instability of the frequency causes a high
probability of early/late deliveries that are both undesir­

able (early deliveries lead to wasting the items that are
not consumed before expiration, and late deliveries lead
to a shortage of items).

• dependability, i.e., an upper bound on failure frequency
(see, e.g., (Boussemart and Limnios 2004; Boussemart,
Limnios, and Fi l l ion 2002)). If this bound is locally vio­

lated with considerable probability, a user may interpret
this as a violation of the dependability guarantee. For ex­

ample, consider a device supposed to fail at most once in
a month on average during the device lifetime. If the de­

vice fails twice in two weeks with probability 0.2 (which
is possible without violating the guarantee on the long­

run average failure frequency), the device is likely to be
perceived as unreliable.

The above list of examples is not exhaustive. Scenarios doc­

umenting the importance of local satisfaction/stability can
be found in every application area involving long­run aver­

age objectives.

Our Contribution Example 1 shows that optimizing the
local satisfaction of long­run average objectives is non­

20143

mailto:david.klaska@mail.muni.cz
mailto:tony@fi.muni.cz
mailto:vojtech.kur@mail.muni.cz
mailto:musil@fi.muni.cz
mailto:rehak@fi.muni.cz
http://www.aaai.org

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

(a) Q 5 > = * @ 0

Figure 1: For the graph (a), the memoryless strategy ay

of (b) achieves l<7y = v = (0.9,0.1) for all y £ [0,1),
but Prob^ [Freqw=v] < 0.43 for al l y £ [0,1). The de­
terministic finite-memory strategy n of (c) achieves I x = v
and Prob7* [Freqw=v] = 1 at the cost of large memory. The
randomized finite-memory strategy r\ of (d) achieves Iv = v
and Probr,\Freq1Q=v\ m 0.74 with less memory.

trivial even for small graphs (i.e., M D P s with no proba­
bilistic choice) and optimal strategies may require mem­
ory of considerable size. In this work, we formalize the no­
tion of local satisfaction, examine its computational hard­
ness, and design an efficient strategy synthesis algorithm for
maximizing the local satisfaction of a given objective in a
given M D P . The algorithm is evaluated on examples of non-
trivial size. To the best of our knowledge, this is the first
systematic study of the local stability of invariant distribu­
tions along runs in M D P s and the associated algorithmic
problems. More concretely, our results can be summarized
as follows:

I. We introduce an abstract class of long-run average ob­
jectives and precisely formulate the local optimization prob­
lem for a given objective and M D P s . We show that comput­
ing an optimal strategy is N P-hard even for graphs.

II. We design a dynamic algorithm Local Eva I for evaluat­
ing the local satisfaction of a given objective Obj achieved
by a given finite-memory strategy a. We show that, on the
one hand, Local Eva I substantially outperforms a naive al­
gorithm based on depth-first search, but, on the other hand,
Local Eva I is not sufficiently efficient for purposes of auto­
matic differentiation and gradient descent.

III. We propose an efficient algorithm LocalSynt for syn­
thesizing a finite-memory strategy a maximizing the local
satisfaction of a given Obj in a given M D P . LocalSynt is
based on isolating three crucial features of a that influence
the local satisfaction of Obj:

F l . The "appropriateness" of Ia for satisfying Obj.

F2. The "regularity" of a, i.e., the stochastic stability of re­
newal times for certain families of states.

F3. The "level of determinism" of a.

Subsequently, we design highly efficient evaluation func­
tions for F 1 - F 3 and optimize them jointly by gradi­

ent descent. We experimentally confirm the scalability of
LocalSynt and the expected impact of different F1-F3 pri­
oritization on the properties of the constructed strategies.

Related Work The steady-state strategy synthesis prob­
lem, i.e., the task of constructing a strategy for a given M D P
achieving a given invariant distribution, has been solved in
(Brázdil et al. 2011) (see also (Brázdil et al. 2014)) even for a
more general class of multiple mean-payoff objectives. The
constructed strategies may require infinite memory in gen­
eral and can be computed in polynomial time. The problem
of constructing a memoryless randomized strategy achiev­
ing a given steady-state distribution has been considered in
(Akshay et al. 2013) for a subclass of ergodic M D P s and
in (Velasquez 2019; At ia et al. 2020) for general M D P s . A
polynomial-time strategy synthesis algorithm based on l in­
ear programming is given in both cases. The problem of
computing a deterministic strategy achieving a given invari­
ant distribution has been shown N P-hard and solvable by
integer programming in (Velasquez et al. 2023). More re­
cently, steady-state strategy synthesis under L T L constraints
has been solved in (Křetínský 2021).

Optimizing expected window mean­payoff for M D P (Bor­

dais, Guha, and Raskin 2019) is perhaps most related to the
problem studied in this paper. Here, each M D P state is as­

signed a payoff collected when visiting the state. The task
is to ensure that the average reward per visited state (mean­

payoff) in a window of length t sliding along a run reaches a
given threshold within the window length. This can be seen
as enforcing a form of "local stability" of the mean payoff
along a run. The problem is solvable in time polynomial in
the size of M D P and £, and the algorithm relies on previous
results achieved for 2­player games (Chatterjee et al. 2015).
This technique is not applicable in our setting (recall that the
studied problem is N P­hard even for graphs).

In a broader perspective, there are also works studying the
trade­offs between the overall expected performance (mean
payoff) and some forms of stability measured by variances
of appropriate random variables (Brázdil et al. 2017).

The Model
We assume familiarity with basic notions of probability
theory (probability distribution, expected value, conditional
variance, etc.) and Markov chain theory. The set of all proba­

bility distributions over a finite set A is denoted by Dist(A).

Markov chains A Markov chain is a triple C =
(S, Prob, fi) where S is a finite set of states, Prob: S x S —>
[0,1] is a stochastic matrix such that J2s>f=s Pr°b(s, s') = 1
for every s £ S, and \i £ Dist(S) is an initial distribution.

A run of C is an infinite sequence w = so, s±,... of
states. We use to denote the probability measure in the
standard probability space over the runs of C determined by
Prob and /i, and we use Init(w) to denote the initial state of
w (i.e., Init(w) = SQ).

Let s,t £ S. We say that t is reachable from s i f the prob­

ability of visiting t from s is positive, i.e., Prob
n(s, t) > 0

for some n > 0 (recall that Prob0 is the identity matrix).

20144

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Markov decision processes (MDPs) A Markov decision
process (MDP)1 is a triple D=(V,E,p) where V is a fi­
nite set of vertices partitioned into subsets (VJV, Vs) of non-
deterministic and stochastic vertices, E C VxV is a set of
edges s.t. every vertex has at least one out-going edge, and
p: Vs^Dist{V) is a probability assignment s.t. p(v)(v')>0
only i f (v, v') £ E. We say D is a graph i f Vg=0.

Outgoing edges in non-deterministic states are selected by
a strategy. The most general type of strategy is a history-
dependent randomized (HR) strategy where the selection
is randomized and depends on the whole computational
history. Since H R strategies require infinite memory, they
are not apt for algorithmic purposes. Therefore, we restrict
ourselves to a subclass of finite-memory randomized (FR)
strategies introduced in the next paragraph.

FR strategies Let D = (V,E,p) be an M D P and M ^ 0
a finite set of memory states. Intuitively, memory states are
used to "remember" some information about the sequence
of previously visited vertices. For a given pair (v, m) where
v is a currently visited vertex and m a current memory state,
a strategy randomly selects a new pair (v',m') such that
(v, v') £ E. In general, the new memory state ml may not
be uniquely determined by the chosen v'. If v is stochastic,
then v' is selected with probability p(v) (v1), and the strategy
randomly selects the new memory state ml.

Formally, let a: V —> 2 M be a memory allocation assign­
ing to every vertex ju a non-empty subset of memory states
available in V. Let V = {(v, m) \ v £ V, m £ a(v)} be the
set of augmented vertices. A finite-memory (FR) strategy is
a function a: V —> Dist(V) such that for all (v,m) £ V
where v £ Vs and every (v, v') £ E we have that

a(v,m)(v',m!) = p(v)(v').
m ' (i Q (u ')

A n F R strategy is memoryless (or Markoviari) i f M is a sin­
gleton. In the following, we use v to denote an augmented
vertex of the form (v, m) for some m £ a(v).

Every F R strategy a together with a probability distri­
bution p £ Distiy) determine the Markov chain Da =
(V,Prob, p) where Prob(v, u) = a(v)(u).

Invariant distributions Let C = (S,Prob,p) be a
Markov chain. A bottom strongly connected component
(BSCC) of C is a maximal B C S such that B is strongly
connected and closed under reachable states, i.e., for all
s,t £ B and r £ S we have that t is reachable from s,
and i f r is reachable from s, then r £ B.

L e t B be a B S C C of C . For every v £ Dist(B), let Bv be
the Markov chain (B, Probs, v) where Probs is the restric­
tion of Prob to BxB. Furthermore, let I s £ Dist(B) be
the unique invariant distribution satisfying I s = I s • Probs
(note that I s is independent of v). B y ergodic theorem (Nor-
ris 1998), I s is the limit frequency of visits to the states of

1 Our definition of MDPs is standard in the area of graph games.
It is equivalent to the "classical" M D P definition where actions are
used instead of stochastic vertices (see, e.g., (Puterman 1994)). For
our purposes, the adopted definition is more convenient and leads
to substantially simpler notation.

B along a run in Bv. More precisely, let w = so,si,...be
a run of Bv. For every n > 1, let Freqn(w): B —> [0,1] be
the state frequency vector computed for the prefix of w of
length n, i.e., for every s £ B,

Freqn{w){s) = # s (s 0 , • • •, sn-i)/n

where # s (so , • • •, s „ _ i) is the number of occurrences of s
in so, • • •, sn-\. Let Freq(w) = lirrin^oo Freqn(w). If the
limit does not exist, we put Freq(w) = 0. The ergodic theo­
rem says that Yv[Freq=lB] = 1.

Long-run average objectives Let D = (V, E, p) be an
M D R A long-run average objective for D is a function
Obj: Distiy) —> R - ° . Intuitively, for a given frequency
of visits to V, the value of Obj specifies the "badness" of
the frequency, i.e., a higher value of Obj(p) indicates that p
is "less appropriate" for achieving the objective encoded by
Obj. Two representative examples are given below.

• For a given v £ Distiy), let Distancev(p.) = \\p — v\,
where || • || is a vector norm (such as L i or L2). Hence,
the objective Distancev corresponds to minimizing the
distance from a desired frequency vector v.

• For every v £ V, let KV C [0,1] be an interval of ad­
missible frequencies of visiting the vertex v. For exam­
ple, i f KV = [0,0.2], then v should be visited with fre­
quency at most 0.2. For every p £ Dist(V), we put
SatisfyK(p) = 0 i f p(v) £ KV for all v £ V. Other­
wise, SatisfyK(p) = 1. The objective SatisfyK then cor­
responds to satisfying the constraints imposed by K.

In some scenarios, the value of a long-run average objec­
tive depends only on the total frequency of visits to "equiv­
alent" vertices. Formally, such equivalence is defined as a
labeling C: V —> L where equivalent vertices share the
same label, and a labeled long-run average objective is rep­
resented by a function C-Obj: Dist(L) —> R-° specify­
ing the "badness" of a given frequency of labels seen along
a run. The function C-Obj represents the unique objective
Obj: Dist(V) -> such that Obj(p) = C-Obj(pc)
where pc{£) = E „ e £ - i (<)

In the following sections, we_also apply Obj to distribu­
tions over augmented vertices V. For every p £ Distiy),
we put Obj(p) = Objiy), where v £ Distiy) is defined by

Local Frequency Measures Let D = (V,E,p) be an
M D P and Obj a long-run average objective for D.

The "global" satisfaction of Obj achieved by an F R strat­
egy a is measured by m i n s OZy(Is) where B ranges over
the B S C C s of Da. As we already noted in Example 1, it may
happen that an F R strategy achieves the optimal Objils),
but the expected value of Obj for a local frequency of states
sampled from n consecutive states along a run is large. The
local satisfaction of Obj is measured by the expected bad­
ness of the local frequency defined in the next paragraph.

Let a be a F R strategy, B a B S C C of Da, and ^ a n initial
distribution over B. Consider the local frequency sampled
from n consecutive states along a run in B, where the sam­
pling starts in a randomly chosen pivot state p. The probabil­
ity of p = s for a given s £ B corresponds to the "global"

20145

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

frequency of s in a run, which is equal to IB(S) indepen­
dently of n B . Hence, the conditional expected badness of
the local frequency under the condition p = s is equal to
E^' [Obj(Freqn)} where fis is a distribution over B such that
Hs(s) = 1 and fis(t) = 0 for all t ^ s . Hence, the expected
badness of the local frequency is defined as

Is(s) • W- [Obj(Freqn)] = E I s [Obj(Freqn)]

We intuitively expect that E I f l [Obj(Freqn)\ decreases
with increasing time horizon n. This holds i f n is increased
by a sufficiently large k > 0. However, for k = 1, it may
happen that E I B [Obj{Freqn)] increases. We fix this incon­
venience by adopting the following definition:

L-Badnessa(Obj,d) = m i n m i n E l B [Obj(Freqn)}
B n<d

That is, for every d > 1, we consider the best outcome
achievable for a time horizon of size at most d in a B S C C B
of Da. Note that L-Badness"(Obj, d) is non-increasing in d.

The next theorem shows that the problem of computing
an F R strategy a minimizing L-Badness"{Obj, d) is compu­
tationally hard even for graphs (MDPs with no stochastic
vertices) where an optimal F R strategy does not require ran­
domization. A proof is in (Klaska et al. 2023).

Theorem 1. Let D = (V,E,p) be a graph (i.e., Vs = 0),
d £ N, and v £ Dist(V). The existence of a FR strategy a
such that P i B [Freqn=v] = 1 for some n < d and a BSCC
B of Da is NP-hard.

The NF'-hardness holds even under the assumption that if
such a a exists, it can be constructed so that a(v) is a Dirac
distribution for every v £ V.

Note that Theorem 1 implies NP-hardness of minimizing
L-Badnessa(Obj,d) for Distance^ and Satisfy K , because
P i B [Freqn=v] = 1 iff L-Badnessa(Distancev,d) = 0 iff
L-Badness"(SatisfyK,d) = 0 where K(V) = [v(v),v(v)}
for every v £ V.

Evaluating Local Badness
In this section, we design algorithm Loca I Eva I for evaluating
L-Badness" (Obj, d).

Let D = (V,E,p) be an M D P , a an F R strategy for
D, and C: V —> L a labeling. Furthermore, let C-Obj:
Dist(L) —> K - ° be the desired objective function. Algo­
rithm Loca I Eva I consists of several phases, following the
definition of L-Badnessa(Obj, d): First, we use Tarjan's al­
gorithm (Tarjan 1972) to identify all B S C C s of Da. For
each B S C C B, the invariant distribution IB is computed via
the following system of linear equations: For each v £ B,
we have a fresh variable Zy and equations expressing that
z = z • ProbB and X/res zv = T n e vector I s is the
unique solution of this system.

The core of Loca I Eva I is Algorithm 1 computing
E I s [Obj(Freqn) \ Init=v] for all v £ B and n < d by
dynamic programming. Since for all n < d we have that

ElB[Obj(Freqn)} = ^ lB(v)-ElB[Obj(Freqn) \ Init=v],

Algorithm 1: The core procedure of Loca I Eva I

for e B do
S0-V = Vo

so.vec = {0, • • •, 0}
s0.vec[£(v0)]++
cur-map[so] = 1.
for n £ { 1 , . . . , d} do

for (s,p) £ cur-map do
rsi[t)o][n] +=p • £-Obj(s.vec/n)

if n < d then
for (s, p) £ cur-map do

for v £ B do
s = s
S .V = V

s' .vec[C(v)]++
next-map[s'] +=p • a[s.v][v]

swap(cur jrnap, next-map)
next .map .clear ()

the computation of L-Badness17(Obj, d) is straightforward.
Algorithm 1 uses two associative arrays (e.g., C++ un-

ordered_map), called cur-map and next-map, to gather in­
formation about the probabilities of individual paths. More
specifically, the maps are indexed by states, where a state
consists of an augmented vertex v £ B, corresponding to
the last vertex of a path, and a vector vec of \L\ integers,
corresponding to the numbers of visits to particular labels.
The value associated to a state s is the total probability of
all paths corresponding to s. The values E I S [Obj(Freqn)
Init=v] are gathered in a 2-dimensional array rsl. Further
details are given in (Klaska et al. 2023).

Optimizing Local Badness
In this section, we design an algorithm L o c a l S y n t for con­
structing an F R strategy a with memory M minimizing
L-Badness° (Obj', d) for a given M D P D. The main idea be­
hind L o c a l S y n t is to construct and optimize a function si­
multaneously rewarding the following features of a:

F l . Global satisfaction of Obj;

F2. Stochastic stability of renewal times for families of aug­
mented vertices with the same label.

F3. The level of determinism achieved by a.

Intuitively, F l ensures that a achieves Obj globally, and F2
in combination with F3 "encourage" the features of a caus­
ing a small difference between the global and the local sat­
isfaction. To understand the significance of F2, realize that
the frequency of visits to augmented vertices with the same
label is the inverse of the expected renewal time for this
family. Hence, the local stability of the frequency of visits
can be achieved by maximizing the stochastic stability (i.e.,
minimizing the standard deviation of) the renewal time. To
understand the significance of F3, realize that for every de­
terministic F R strategy a, the value of L-Badnessa (Obj, d)
is equal to m i n e Obj(Is) for a sufficiently large d. Hence,
putting more emphasis on F3 yields strategies where aiv)
is close to a Dirac distribution for many v, which may be
advantageous when d is high.

20146

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Measuring F 1 - F 3

In this section, we design efficient measures for F1-F3 and
combine these measures into a single function Comb.

Let D = (V, E, p) be an M D P , C: V -> L a labeling, and
Obj a long-run average objective for D. Furthermore, let a
be an F R strategy with memory M and B a B S C C of DA.
Recall that I s is the invariant distribution of B, and BIB is
the Markov chain determined by B and the initial distribu­
tion 1B. Furthermore, let RT(w) be the least i > l such that
C{vi) = £(VQ). If there is no such i, we put RT{w) = oo.
Hence, RT(w) is the number of edges needed to visit an
augmented vertex with the same label as Init(w) (i.e., the
Renewal Time to the initial label).

Measuring F l The global dissatisfaction of Obj achieved
by a in B1B is measured by Obj (1B)-

Measuring F2 Let V a r I s [RT \ C(Init)=£] be the condi­
tional variance of the Renewal Time to the initial label under
the condition that a run is initiated in an augmented vertex
with label I. If the probability of C(Init)=£ is zero, i.e, 1B
assigns zero to all augmented vertices with label I, we treat
V a r I s [RT \ C(Init)=£] as zero. Furthermore, we define the
corresponding standard deviation

SD(£) = \]x>axlB[RT I C(Init)=£].

Stochastic instability of renewal times caused by a in B1B

is measured by the function

Penalty^a, B) = 1B(£) • SD{£)
£<EL

where 1B{£) is the sum of all 1B (v) where v £ B and
C(v) = £. That is, Penalty 1 is the weighted sum of all SD(£)
where the weights correspond to the limit label frequencies.

Measuring F3 The level of non-determinism caused by a
in B1B is measured by the stochastic instability of Renewal
Times separately for each augmented vertex. That is, we put

Penalty2(a, B) = Y^ ^B(V) • \JxailB[RT | Init=v]
v£B

If the probability of Init=v is zero, we treat the correspond­
ing conditional variance as zero.

Note that for every deterministic strategy we have that
V a r I s [RT | Init=v] = 0 for every v, i.e., Penalty^ = 0.
However, Penalty 1 is still positive i f the expected renewal
times for the individual augmented vertices with the same la­
bel differ. The only "degenerated" case when Penalty j and
Penalty2 are the same functions is when all vertices have
pairwise different labels and every vertex is allocated just
one memory state.

Combining the measures Our LocalSynt algorithm at­
tempts to minimize the following function Comb (a) over
all B S C C B of DA:

{l-P--y)Obj(IB)+P-ci-Penalty 1(a,B)+-y-c2Penalty2(a,B)

where f3,j £ [0,1] are weights such that f3 + 7 < 1
representing the preference among F 1 - F 3 . Since the val­
ues of Obj(lB) may range over very different intervals than

Algorithm 2: LocalSynt

SolutionParameters Randomlnit
for i G { 1 , . . . , Steps} do

a *r- Softmax(SolutionParameters)
Comb(a) <s— EvaluateComb(a)
V Comb(a) <s— Gradient (a)
SolutionParameters += Step (VComb (a))
Save Comb(a),a

return a with the least Comb(a)

Penaltyl and Penalty2, we also use the normalizing con­
stants c\ = (Obj(lB)+l)/(Penalty 1(a, B)+l) and c2 =
(Obj(lB)+l)/(Penalty2(a, B)+l).

Computing Comb

In this section, we show that there exist three efficiently con-
structible systems of linear equations with unique solutions
x, y and z such that the function Comb is a closed-form ex­
pression over the components of x, y, and z containing only
differentiable functions. This allows us to compute the gra­
dient of Comb efficiently and apply state-of-the-art methods
of differentiable programming to minimize Comb by gradi­
ent descent, which is the essence of LocalSynt functionality.

For every v £ B and £ £ L such that 1B(£) > 0, let
Xyt£ and yyt£ be fresh variables. For every Xyt£, we add an
equation

ro rfc(v) = £,
v / \ l + J 2 U & B • %u,e otherwise.

Then the system has a unique solution x where Xyte is the ex­
pected time for visiting an ^-labeled augmented vertex from
v. Hence, E 1 b [RT | Init = v]=l + ^ _ £ S a(v)(u) • x % i ,
where £ = C(v).

Similarly, for every y^^, we add an equation

ro rfc(v) = £,

yv,i \ l + J2ueBa(v)(u) • (2xute +yu,e) otherwise.

Note that the above equation is linear and uses components
of x in the coefficients. The system has a unique solution y
where y\^ is the expected square of the time for visiting an
^-labeled augmented vertex from v. Hence,

ElB [RT2 I Init = v] = 1 + J2 • (2Su,i + Vu,t)
u<EB

The vector z corresponding to the invariant distribution I B

is computed the same way as in Local Eva I.
BothElB[RT I C(Init)=£] ami Z '•' / , ' / - | C(Init)=£]

are weighted sums of E I s [RT | Init = v] and E I s [RT2

Init = v] where the weights are expressions over the com­
ponents o f f . Since V a r [X | Y] = E[X2 \ Y] - E2[X \ Y]
for al l random variables X, Y, the conditional variances
V a r l B [RT \ Init=v] and V a r I f l [RT \ C(Init)=£] are also
expressible as closed form expressions over x, y, and z.
Hence, Comb also has this property.

20147

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

0.25-

0.20-
in in

-g 0 .15-H3 _Q

| 0 .10-

0.05-

0.00-

L -badness for d=5 and m=

-i 1 1 1 1 1 1-

3 4 5 6 7 8 9
size o f t ime hor izon d

1,0.0,0.0
1,0.0,0.1

.2,0.0,0.2
•2,0.2,0.0
•3,0.0,0.1
3,0.0,0.3

-4,0.3,0.0
- 1 —
10 0.2 0.3

beta
0.4 0.5

0.40

0.35

- 0 . 3 0

- 0 . 2 5

- 0 . 2 0

0.15

- 0 . 1 0

- 0 . 0 5

Figure 2: Strategies constructed for the graph of Fig . 1. Adding more memory to the state R helps. Best results are achieved for
certain combinations of j3 and 7 where j3 + 7 does not exceed the threshold around 0.6.

The LocalSynt Algorithm

Our algorithm is based on differentiable programming and
gradient descent, and it performs the standard optimization
loop shown in Algorithm 2. For every pair of augmented
vertices (v, u) such that (v, u) £ E, we need a parameter
representing a{v){u). Note that i f v is stochastic, then the
parameter actually represents the probability of selecting the
memory state of u. These parameters are initialized to ran­
dom values sampled from LogUniform distribution (so that
we impose no prior knowledge about the solution). Then,
they are transformed into probability distributions using the
standard Softmax function.

The crucial ingredient of Loca ISynt is the procedure Eval-
uateComb for computing the value of Comb for the strat­
egy represented by the parameters. This procedure allows
to compute Comb(a), and also the gradient of Comb(a)
at the point corresponding to a by automatic differentia­
tion. After that, we update the point representing the cur­
rent a in the direction of the steepest descent. The inter­
mediate solutions and the corresponding Comb values are
stored, and the best solution found within Steps optimiza­
tion steps is returned. Our implementation uses P Y T O R C H
framework (Paszke et al. 2019) and its automatic differenti­
ation with A D A M optimizer (Kingma and B a 2015)).

Observe that LocalSynt is equally efficient for general
M D P s and graphs. The only difference is that stochastic ver­
tices generate fewer parameters.

Experiments

The system setup was as follows: C P U : A M D Ryzen
93900X (12 cores); R A M : 32GB; Ubuntu 20.04. To sepa­
rate the probabilistic choice introduced by the constructed
strategies from the internal probabilistic choice performed in
stochastic vertices, we perform our experiments on graphs.

Experiment I

In our first experiment, we aim to analyze the impact of the
j3,7 coefficients in Comb and the size of available memory
on the structure and performance of the resulting strategy a.

We use the graph D of F ig . 1(a) and the objective
Distance^ with L2 norm where v(R) = | and v{M) = | .
In our F R strategies, we allocate m < 4 memory states to
the vertex R and one memory state to the vertex M. The
coefficients f3,7 range over [0,0.5] with a discrete step 0.1.
For every choice of j3, 7 , and m, we run LocalSynt 40 times
with Steps set to 800 and return the strategy a with the least
value of Comb found. Then, we use the Loca I Eva I algorithm
to compute L-Badnessa (Distance^, d) for d £ { 3 , . . . , 10}.

Discussion The plot of Fig . 2 (left) shows that

1. increasing the size of memory m leads to better perfor­
mance (smaller L-Badnessa(Distance^, d));

2. setting , 3 = 7 = 0 produces worse strategies (for every m)
than setups with even small positive values of f3,7;

3. setting p + 7 > 0.5 leads to very bad strategies.

The outcomes 1. and 2. are in full accordance with the intu­
ition presented in the section "Optimizing Local Badness".
Outcome 3. is also easy to explain—when j3 or 7 is too
large, the algorithm LocalSynt concentrates on maximizing
stochastic stability of renewal times or achieving determin­
ism and "ignores" the L2 distance from v. For example, the
worst strategy of Fig . 2 (left) obtained for m = 2, j3 = 0.5,
7 = 0 "regularly alternates" between R and M, i.e., the
renewal times of R and M are equal to 2 and have zero vari­
ance. This leads to local frequency (| , \) , which is "far"
from the desired v.

We also provide plots of L-Badnessa(Distancev,d)
where m and d are fixed and fj, 7 range over [0,0.5]. The
plot for d = 5 and m = 3 is shown in Fig . 2 (right). A l l
these plots (see (Klaska et al. 2023)) consistently show that

20148

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

(&)

L-Badness{Distancev, d)

Figure 3: The structure of D4 {a), 1x4 (b), and Q4 (c).

the best outcomes are achieved for certain combinations of j3
and 7 where j3 + 7 is positive but below 0.6 (in Fig . 2 (right),
the best outcomes are in yellow).

Experiment II

Here we aim to analyze the scalability of Local Eva I and
LocalSynt and demonstrate that LocalSynt can produce so­
phisticated strategies for instances of non-trivial size. Since
the running time of LocalSynt depends on the number of pa­
rameters, i.e., the number of augmented edges, we need to
consider a scalable instance.

For every n > 2, let Dn be a graph with vertices
vi,..., vn and edges {vu Vi) and (vi, v (i m o c i n) + i) for ev­
ery i < n. Every Vi is assigned m i n { i , \^~\} memory states.
The desired frequency v is defined by v(vi) = i/s where

s = . The structure of D4 is shown in F ig . 3(a), to­
gether with v (brown) and memory allocation (red).

We consider the objective Distancev with the L2 norm,
and we aim to optimize L-Badnessa(Distanceu,d) where
d = s (the least d such that v is achievable in d consec­
utive states.) To evaluate the scalability of LocalEval and
LocalSynt we run LocalEval 5 times for different choice
of j3 and 7 and evaluate L-Badnessa(Distance„,d) using
LocalEval and also a naive algorithm based on depth-first
search (see (Klaska et al. 2023) for a more detailed descrip­
tion of the naive algorithm). In Table 2, for every n we report
the number of parameters, the size of d, the average time of
one Step of LocalSynt (i.e., one iteration of the main for
loop of LocalSynt), one run of LocalEval, and one run of the
naive evaluation algorithm (in sees).

To evaluate the quality of strategies constructed by
LocalSynt, we consider two natural strategies nn and gn

(see F ig . 3 (b) and (c)). Both strategies perform an "ideal"
number of self-loops on i > i , . . . , V[n/2] where the memory
suffices. On the other vertices, nn performs \n/2] — 1 self-
loops deterministically and then selects randomly between
the self-loop and the edge to the next vertex, while gn per­
forms a random choice in every visit. The probabilities are
computed so that 1 = v. Hence, both nn and gn represent an
"educated guess" for a high-quality strategy.

For all n £ { 2 , . . . , 8}, we run LocalSynt 40 times with
Steps set to 800 for all , 3 , 7 £ (0,0.5) with a discrete
step 0.1, always collecting the strategy an with the mini-

n 7T n Qn cr„ ß 7

2 0.15713 0.15713 0.15713 0.2 0.0
3 0.11479 0.10255 0.11473 0.1 0.1
4 0.19416 0.17131 0.10540 0.0 0.2
5 0.14277 0.11762 0.10540 0.0 0.2
6 0.17491 0.13985 0.08016 0.0 0.2
7 0.13781 0.10456 0.10022 0.0 0.2
8 0.15609 0.11436 0.10012 0.0 0.2

Table 1: Strate gy <7„ outperforms irn and gn.

n Par d Step LocalEval Naive

4 25 10 2.12E-03 2.21E-04 2.74E-03
5 61 15 2.71E-03 4.56E-03 1.21E+02
6 79 21 2.21E-03 4.13E-01 timeout
7 150 28 2.44E-03 1.98E+01 timeout
8 182 36 2.50E-03 timeout timeout
10 350 55 2.97E-03 timeout timeout
12 599 78 6.43E-03 timeout timeout
14 945 105 1.88E-02 timeout timeout
16 1404 136 3.91E-02 timeout timeout
18 1992 171 1.05E-01 timeout timeout
20 2725 210 2.15E-01 timeout timeout

Table 2: Running times in seconds, timeout = 900 sees.

mal Comb value. The outcomes are shown in Table 1. In­
terestingly, an significantly outperforms both 7r„ and gn for
all n > 4. The strategy an cannot be found "ad-hoc"; in
most cases, the associated invariant distribution is different
from v, which means that global satisfaction "traded" for
local satisfaction. We also report the values of j3 and 7 for
which the best strategy an was found by LocalSynt.

Discussion Table 2 shows that LocalSynt can easily pro­
cess instances with thousands of parameters, while the scal­
ability limits of LocalEval are reached for d « 30. Hence,
LocalEval cannot be used for strategy synthesis based on
gradient descent because LocalEval would have to be in­
voked hundreds of times in a single run. Table 1 shows that
LocalSynt can construct sophisticated strategies for non-
trivial instances. Details are in (Klaska et al. 2023).

Conclusions
The results demonstrate that non-trivial instances of the local
satisfaction problem for long-run average objectives can be
solved efficiently despite the NP-hardness of this problem.
Experiment II also shows that the best strategy for Dn is ob­
tained by setting j3 = 0.0 and 7 = 0.2. Although LocalEval
cannot evaluate the strategies obtained for large n's, there is
a good chance that these strategies are better than the ones
constructed ad-hoc. This indicates how to overcome the scal­
ability issues for other parameterized instances.

20149

The Thirty­Eighth AAAI Conference on Artificial Intelligence (AAAI­24)

Acknowledgments
Research was sponsored by the Army Research Office and
accomplished under Grant Number W911NF­21­1­0189.
Disclaimer. The views and conclusions contained in this
document are those of the authors and should not be inter­

preted as representing the official policies, either expressed
or implied, of the Army Research Office or the U.S . Govern­

ment. The U.S . Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation herein.

Vojtěch Kůr received funding from the European Union's
Horizon Europe program under the Grant Agreement No.
101087529. Vít M u s i l was supported by the Czech Science
Foundation grant GA23­06963S.

References
Akshay, S.; Bertrand, N . ; Haddad, S.; and Hélouet, L . 2013.
The Steady­State Control; Problem for Markov Decision
Processes. In Proceedings of 10th Int. Conf. on Quantitative
Evaluation of Systems (QEST'13), volume 8054 of Lecture
Notes in Computer Science, 290­304. Springer.

Atia, G . ; Beckus, A . ; Alkhouri , I.; and Velasquez, A . 2020.
Steady­State Policy Synthesis in Multichain Markov Deci­

sion Processes. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2020), 4069­

4075.

Bordais, B . ; Guha, S.; and Raskin, J.­F. 2019. Expected
Window Mean­Payoff. In Proceedings ofFST&TCS 2019,
volume 150 of Leibniz International Proceedings in Infor­

matics, 32:1­32:15. Schloss Dagstuhl­Leibniz­Zentrum fiir
Informatik.

Boussemart, M . ; and Limnios, N . 2004. Markov Decision
Processes with Asymptotic Average Failure Rate Constraint.
Communications in Statistics ­ Theory and Methods, 33(7):
1689­1714.

Boussemart, M . ; Limnios, N . ; and Fi l l ion , J. 2002. Non­

Ergodic Markov Decision Processes with a Constraint on
the Asymptotic Failure Rate: General Class of Policies.
Stochastic Models, 18(1): 173­191.

Brázdil, T ; Brožek, V ; Chatterjee, K . ; Forejt, V ; and
Kučera, A . 2011. Two Views on Multiple Mean­Payoff Ob­

jectives in Markov Decision Processes. In Proceedings of
LICS 2011. I E E E Computer Society Press.

Brázdil, T ; Brožek, V ; Chatterjee, K ; Forejt, V ; and
Kučera, A . 2014. Markov Decision Processes with Mult i ­

ple Long­run Average Objectives. Logical Methods in Com­

puter Science, 10(1): 1­29.

Brázdil, T ; Chatterjee, K ; Forejt, V ; and Kučera, A . 2017.
Trading performance for stability in Markov decision pro­

cesses. Journal of Computer and System Sciences, 84: 144­

170.

Chatterjee, K ; Doyen, L . ; Randour, M . ; and Raskin, J.­F.
2015. Looking at Mean­Payoff and Total­Payoff through
Windows. Information and Computation, 242: 25­52.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings oflCLR 2015.

Klaška, D . ; Kučera, A . ; Kůr, V ; Musi l , V ; and Řehák,
V. 2023. Optimizing Local Satisfaction of Long­

Run Average Objectives in Markov Decision Processes.
arXiv:2312.12325.

Křetínský, J. 2021. LTL­Constrained Steady­State Policy
Synthesis. In Proceedings of the International Joint Confer­

ence on Artificial Intelligence (IJCAI 2021), 4104^1111.
Lazar, A . 1982. Optimal Flow Control of a Class of Queue­

ing Networks in Equilibrium. IEEE Transactions on Auto­

matic Control, 28(11): 1001­1007.

Norris, J. 1998. Markov Chains. Cambridge University
Press.
Paszke, A . ; Gross, S.; Massa, F ; Lerer, A . ; Bradbury, J.;
Chanan, G . ; Killeen, T ; L i n , Z . ; Gimelshein, N . ; Antiga, L . ;
Desmaison, A . ; Kopf, A . ; Yang, E. ; DeVito, Z . ; Raison, M . ;
Tejani, A . ; Chilamkurthy, S.; Steiner, B . ; Fang, L . ; Bai , J.;
and Chintala, S. 2019. PyTorch: A n Imperative Style, High­

Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024­8035. Curran A s ­

sociates, Inc.

Puterman, M . 1994. Markov Decision Processes. Wiley.
Skwirzynski, J. 1981. New Concepts in Multi­User Com­

munication. Springer Science & Business Media, 43.
Tarjan, R. 1972. Depth­First Search and Linear Graph A l ­

gorithms. SI AM Journal of Computing, 1(2).
Velasquez, A . 2019. Steady­State Policy Synthesis for Ver­

ifiable Control. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2019), 5653­

5661.

Velasquez, A . ; Alkhouri , I.; Subramani, K ; Wojciechowski,
P.; and Atia , G . 2023. Optimal Deterministic Controller
Synthesis from Steady­State Distributions. Journal of Au­

tomated Reasoning, 67(7).

20150

