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Abstract 

Long­run average optimization problems for Markov deci­

sion processes (MDPs) require constructing policies with op­

timal steady­state behavior, i.e., optimal limit frequency of 
visits to the states. However, such policies may suffer from 
local instability, i.e., the frequency of states visited in a 
bounded time horizon along a run differs significantly from 
the limit frequency. In this work, we propose an efficient al­

gorithmic solution to this problem. 

Introduction 
A long­run average objective for a Markov decision process 
( M D P ) D is a property depending on the proportion of time 
(frequency) spent in the individual states of D. Typical ex­

amples of such properties include 

• the total frequency of visits to "bad" states is <0.05; 
• the state frequency vector is equal to a given vector v. 

The existing works on long­run average optimization (see 
Related Work) concentrate on constructing a strategy a such 
that the Markov chain Da obtained by applying a to D is ir­

reducible and the invariant (also called steady­state (Norris 
1998)) distribution IC T achieves the objective. Unfortunately, 
the existing algorithms cannot influence the local stability of 
the invariant distribution along a run. 

More concretely, for a given time horizon n, consider the 
local frequency Freqn of states sampled from n consecutive 
states along a run, starting at a randomly chosen pivot posi­

tion (we refer to Section for precise definitions). The local 
stability of the invariant distribution is the probability that 
Freqn stays "close" to IC T. If the local stability is low, then 
the probability of achieving the considered objective locally 
(i.e., within the prescribed time horizon) is also low, and this 
may lead to severe problems in many application scenarios. 

Example 1. Consider a system of Fig. 1 (a) that can be either 
in the running (R) or maintenance (M) state. A long­run sus­

tainability of the system requires that the system is running 
for 90% of time and the remaining 10% is spent on mainte­

nance. Hence, we aim at constructing a strategy a such that 
la = v, where v{R) = 0.9 and v(M) = 0.1. Ideally, the 
maintenance should be performed regularly, i.e., the state 
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M should be visited once in 10 consecutive states. That is, 
Freq1Q should be equal to v with high probability. 

For every y £ [0,1), the memoryless strategy av of 
Fig . 1(b) satisfies I C T y = v. However, the probability of 
Probav[Freq10=v] approaches zero as y —> 1. The best re­

sult is achieved for y = 0, where this probability is « 0 . 4 3 . 
Hence, even the best memoryless strategy may considerably 
degrade the reliability of the system. 

The simple deterministic strategy n of Fig . 1(c) satis­

fies 11̂  = v and Prob'K[Freqw=v] = 1. Note that n 
needs 9 memory states to "count" the repeated visits to 
R before visiting M. A "tradeoff" between memory size 
and the local satisfaction of the sustainability objective is 
achieved by the strategy r/ of Fig . 1(d) where \ = v and 
Prob'n[Freq10=i'] « 0 . 7 4 . " • 

Other examples of long­run average objectives where the 
local satisfaction/stability requirements rise naturally are 

• critical supply delivery (see, e.g., (Skwirzynski 1981; 
Lazar 1982)), where a bundle of items with limited lifes­

pan should be delivered with a given frequency / . A high 
level of local instability of the frequency causes a high 
probability of early/late deliveries that are both undesir­

able (early deliveries lead to wasting the items that are 
not consumed before expiration, and late deliveries lead 
to a shortage of items). 

• dependability, i.e., an upper bound on failure frequency 
(see, e.g., (Boussemart and Limnios 2004; Boussemart, 
Limnios, and Fi l l ion 2002)). If this bound is locally vio­

lated with considerable probability, a user may interpret 
this as a violation of the dependability guarantee. For ex­

ample, consider a device supposed to fail at most once in 
a month on average during the device lifetime. If the de­

vice fails twice in two weeks with probability 0.2 (which 
is possible without violating the guarantee on the long­

run average failure frequency), the device is likely to be 
perceived as unreliable. 

The above list of examples is not exhaustive. Scenarios doc­

umenting the importance of local satisfaction/stability can 
be found in every application area involving long­run aver­

age objectives. 

Our Contribution Example 1 shows that optimizing the 
local satisfaction of long­run average objectives is non­
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(a) Q 5 > = * @ 0 

Figure 1: For the graph (a), the memoryless strategy ay 

of (b) achieves l<7y = v = (0.9,0.1) for all y £ [0,1), 
but Prob^ [Freqw=v] < 0.43 for al l y £ [0,1). The de­
terministic finite-memory strategy n of (c) achieves I x = v 
and Prob7* [Freqw=v] = 1 at the cost of large memory. The 
randomized finite-memory strategy r\ of (d) achieves Iv = v 
and Probr,\Freq1Q=v\ m 0.74 with less memory. 

trivial even for small graphs (i.e., M D P s with no proba­
bilistic choice) and optimal strategies may require mem­
ory of considerable size. In this work, we formalize the no­
tion of local satisfaction, examine its computational hard­
ness, and design an efficient strategy synthesis algorithm for 
maximizing the local satisfaction of a given objective in a 
given M D P . The algorithm is evaluated on examples of non-
trivial size. To the best of our knowledge, this is the first 
systematic study of the local stability of invariant distribu­
tions along runs in M D P s and the associated algorithmic 
problems. More concretely, our results can be summarized 
as follows: 

I. We introduce an abstract class of long-run average ob­
jectives and precisely formulate the local optimization prob­
lem for a given objective and M D P s . We show that comput­
ing an optimal strategy is N P-hard even for graphs. 

II. We design a dynamic algorithm Local Eva I for evaluat­
ing the local satisfaction of a given objective Obj achieved 
by a given finite-memory strategy a. We show that, on the 
one hand, Local Eva I substantially outperforms a naive al­
gorithm based on depth-first search, but, on the other hand, 
Local Eva I is not sufficiently efficient for purposes of auto­
matic differentiation and gradient descent. 

III. We propose an efficient algorithm LocalSynt for syn­
thesizing a finite-memory strategy a maximizing the local 
satisfaction of a given Obj in a given M D P . LocalSynt is 
based on isolating three crucial features of a that influence 
the local satisfaction of Obj: 

F l . The "appropriateness" of Ia for satisfying Obj. 

F2. The "regularity" of a, i.e., the stochastic stability of re­
newal times for certain families of states. 

F3. The "level of determinism" of a. 

Subsequently, we design highly efficient evaluation func­
tions for F 1 - F 3 and optimize them jointly by gradi­

ent descent. We experimentally confirm the scalability of 
LocalSynt and the expected impact of different F1-F3 pri­
oritization on the properties of the constructed strategies. 

Related Work The steady-state strategy synthesis prob­
lem, i.e., the task of constructing a strategy for a given M D P 
achieving a given invariant distribution, has been solved in 
(Brázdil et al. 2011) (see also (Brázdil et al. 2014)) even for a 
more general class of multiple mean-payoff objectives. The 
constructed strategies may require infinite memory in gen­
eral and can be computed in polynomial time. The problem 
of constructing a memoryless randomized strategy achiev­
ing a given steady-state distribution has been considered in 
(Akshay et al. 2013) for a subclass of ergodic M D P s and 
in (Velasquez 2019; At ia et al. 2020) for general M D P s . A 
polynomial-time strategy synthesis algorithm based on l in­
ear programming is given in both cases. The problem of 
computing a deterministic strategy achieving a given invari­
ant distribution has been shown N P-hard and solvable by 
integer programming in (Velasquez et al. 2023). More re­
cently, steady-state strategy synthesis under L T L constraints 
has been solved in (Křetínský 2021). 

Optimizing expected window mean­payoff for M D P (Bor­

dais, Guha, and Raskin 2019) is perhaps most related to the 
problem studied in this paper. Here, each M D P state is as­

signed a payoff collected when visiting the state. The task 
is to ensure that the average reward per visited state (mean­

payoff) in a window of length t sliding along a run reaches a 
given threshold within the window length. This can be seen 
as enforcing a form of "local stability" of the mean payoff 
along a run. The problem is solvable in time polynomial in 
the size of M D P and £, and the algorithm relies on previous 
results achieved for 2­player games (Chatterjee et al. 2015). 
This technique is not applicable in our setting (recall that the 
studied problem is N P­hard even for graphs). 

In a broader perspective, there are also works studying the 
trade­offs between the overall expected performance (mean 
payoff) and some forms of stability measured by variances 
of appropriate random variables (Brázdil et al. 2017). 

The Model 
We assume familiarity with basic notions of probability 
theory (probability distribution, expected value, conditional 
variance, etc.) and Markov chain theory. The set of all proba­

bility distributions over a finite set A is denoted by Dist(A). 

Markov chains A Markov chain is a triple C = 
(S, Prob, fi) where S is a finite set of states, Prob: S x S —> 
[0,1] is a stochastic matrix such that J2s>f=s Pr°b(s, s') = 1 
for every s £ S, and \i £ Dist(S) is an initial distribution. 

A run of C is an infinite sequence w = so, s±,... of 
states. We use to denote the probability measure in the 
standard probability space over the runs of C determined by 
Prob and /i, and we use Init(w) to denote the initial state of 
w (i.e., Init(w) = SQ). 

Let s,t £ S. We say that t is reachable from s i f the prob­

ability of visiting t from s is positive, i.e., Prob
n(s, t) > 0 

for some n > 0 (recall that Prob0 is the identity matrix). 
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Markov decision processes (MDPs) A Markov decision 
process (MDP)1 is a triple D=(V,E,p) where V is a fi­
nite set of vertices partitioned into subsets (VJV, Vs) of non-
deterministic and stochastic vertices, E C VxV is a set of 
edges s.t. every vertex has at least one out-going edge, and 
p: Vs^Dist{V) is a probability assignment s.t. p(v)(v')>0 
only i f (v, v') £ E. We say D is a graph i f Vg=0. 

Outgoing edges in non-deterministic states are selected by 
a strategy. The most general type of strategy is a history-
dependent randomized (HR) strategy where the selection 
is randomized and depends on the whole computational 
history. Since H R strategies require infinite memory, they 
are not apt for algorithmic purposes. Therefore, we restrict 
ourselves to a subclass of finite-memory randomized (FR) 
strategies introduced in the next paragraph. 

FR strategies Let D = (V,E,p) be an M D P and M ^ 0 
a finite set of memory states. Intuitively, memory states are 
used to "remember" some information about the sequence 
of previously visited vertices. For a given pair (v, m) where 
v is a currently visited vertex and m a current memory state, 
a strategy randomly selects a new pair (v',m') such that 
(v, v') £ E. In general, the new memory state ml may not 
be uniquely determined by the chosen v'. If v is stochastic, 
then v' is selected with probability p(v) (v1), and the strategy 
randomly selects the new memory state ml. 

Formally, let a: V —> 2 M be a memory allocation assign­
ing to every vertex ju a non-empty subset of memory states 
available in V. Let V = {(v, m) \ v £ V, m £ a(v)} be the 
set of augmented vertices. A finite-memory (FR) strategy is 
a function a: V —> Dist(V) such that for all (v,m) £ V 
where v £ Vs and every (v, v') £ E we have that 

a(v,m)(v',m!) = p(v)(v'). 
m ' ( i Q ( u ' ) 

A n F R strategy is memoryless (or Markoviari) i f M is a sin­
gleton. In the following, we use v to denote an augmented 
vertex of the form (v, m) for some m £ a(v). 

Every F R strategy a together with a probability distri­
bution p £ Distiy) determine the Markov chain Da = 
(V,Prob, p) where Prob(v, u) = a(v)(u). 

Invariant distributions Let C = (S,Prob,p) be a 
Markov chain. A bottom strongly connected component 
(BSCC) of C is a maximal B C S such that B is strongly 
connected and closed under reachable states, i.e., for all 
s,t £ B and r £ S we have that t is reachable from s, 
and i f r is reachable from s, then r £ B. 

L e t B be a B S C C of C . For every v £ Dist(B), let Bv be 
the Markov chain (B, Probs, v) where Probs is the restric­
tion of Prob to BxB. Furthermore, let I s £ Dist(B) be 
the unique invariant distribution satisfying I s = I s • Probs 
(note that I s is independent of v). B y ergodic theorem (Nor-
ris 1998), I s is the limit frequency of visits to the states of 

1 Our definition of MDPs is standard in the area of graph games. 
It is equivalent to the "classical" M D P definition where actions are 
used instead of stochastic vertices (see, e.g., (Puterman 1994)). For 
our purposes, the adopted definition is more convenient and leads 
to substantially simpler notation. 

B along a run in Bv. More precisely, let w = so,si,...be 
a run of Bv. For every n > 1, let Freqn(w): B —> [0,1] be 
the state frequency vector computed for the prefix of w of 
length n, i.e., for every s £ B, 

Freqn{w){s) = # s (s 0 , • • •, sn-i)/n 

where # s ( so , • • •, s „ _ i ) is the number of occurrences of s 
in so, • • •, sn-\. Let Freq(w) = lirrin^oo Freqn(w). If the 
limit does not exist, we put Freq(w) = 0. The ergodic theo­
rem says that Yv[Freq=lB] = 1. 

Long-run average objectives Let D = (V, E, p) be an 
M D R A long-run average objective for D is a function 
Obj: Distiy) —> R - ° . Intuitively, for a given frequency 
of visits to V, the value of Obj specifies the "badness" of 
the frequency, i.e., a higher value of Obj(p) indicates that p 
is "less appropriate" for achieving the objective encoded by 
Obj. Two representative examples are given below. 

• For a given v £ Distiy), let Distancev(p.) = \\p — v\, 
where || • || is a vector norm (such as L i or L2). Hence, 
the objective Distancev corresponds to minimizing the 
distance from a desired frequency vector v. 

• For every v £ V, let KV C [0,1] be an interval of ad­
missible frequencies of visiting the vertex v. For exam­
ple, i f KV = [0,0.2], then v should be visited with fre­
quency at most 0.2. For every p £ Dist(V), we put 
SatisfyK(p) = 0 i f p(v) £ KV for all v £ V. Other­
wise, SatisfyK(p) = 1. The objective SatisfyK then cor­
responds to satisfying the constraints imposed by K. 

In some scenarios, the value of a long-run average objec­
tive depends only on the total frequency of visits to "equiv­
alent" vertices. Formally, such equivalence is defined as a 
labeling C: V —> L where equivalent vertices share the 
same label, and a labeled long-run average objective is rep­
resented by a function C-Obj: Dist(L) —> R-° specify­
ing the "badness" of a given frequency of labels seen along 
a run. The function C-Obj represents the unique objective 
Obj: Dist(V) -> such that Obj(p) = C-Obj(pc) 
where pc{£) = E „ e £ - i ( < ) 

In the following sections, we_also apply Obj to distribu­
tions over augmented vertices V. For every p £ Distiy), 
we put Obj(p) = Objiy), where v £ Distiy) is defined by 

Local Frequency Measures Let D = (V,E,p) be an 
M D P and Obj a long-run average objective for D. 

The "global" satisfaction of Obj achieved by an F R strat­
egy a is measured by m i n s OZy(Is) where B ranges over 
the B S C C s of Da. As we already noted in Example 1, it may 
happen that an F R strategy achieves the optimal Objils), 
but the expected value of Obj for a local frequency of states 
sampled from n consecutive states along a run is large. The 
local satisfaction of Obj is measured by the expected bad­
ness of the local frequency defined in the next paragraph. 

Let a be a F R strategy, B a B S C C of Da, and ^ a n initial 
distribution over B. Consider the local frequency sampled 
from n consecutive states along a run in B, where the sam­
pling starts in a randomly chosen pivot state p. The probabil­
ity of p = s for a given s £ B corresponds to the "global" 

20145 



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24) 

frequency of s in a run, which is equal to IB(S) indepen­
dently of n B . Hence, the conditional expected badness of 
the local frequency under the condition p = s is equal to 
E^' [Obj(Freqn)} where fis is a distribution over B such that 
Hs(s) = 1 and fis(t) = 0 for all t ^ s . Hence, the expected 
badness of the local frequency is defined as 

Is(s) • W- [Obj(Freqn)] = E I s [Obj(Freqn)] 

We intuitively expect that E I f l [Obj(Freqn)\ decreases 
with increasing time horizon n. This holds i f n is increased 
by a sufficiently large k > 0. However, for k = 1, it may 
happen that E I B [Obj{Freqn)] increases. We fix this incon­
venience by adopting the following definition: 

L-Badnessa(Obj,d) = m i n m i n E l B [Obj(Freqn)} 
B n<d 

That is, for every d > 1, we consider the best outcome 
achievable for a time horizon of size at most d in a B S C C B 
of Da. Note that L-Badness"(Obj, d) is non-increasing in d. 

The next theorem shows that the problem of computing 
an F R strategy a minimizing L-Badness"{Obj, d) is compu­
tationally hard even for graphs (MDPs with no stochastic 
vertices) where an optimal F R strategy does not require ran­
domization. A proof is in (Klaska et al. 2023). 

Theorem 1. Let D = (V,E,p) be a graph (i.e., Vs = 0), 
d £ N, and v £ Dist(V). The existence of a FR strategy a 
such that P i B [Freqn=v] = 1 for some n < d and a BSCC 
B of Da is NP-hard. 

The NF'-hardness holds even under the assumption that if 
such a a exists, it can be constructed so that a(v) is a Dirac 
distribution for every v £ V. 

Note that Theorem 1 implies NP-hardness of minimizing 
L-Badnessa(Obj,d) for Distance^ and Satisfy K , because 
P i B [Freqn=v] = 1 iff L-Badnessa(Distancev,d) = 0 iff 
L-Badness"(SatisfyK,d) = 0 where K(V) = [v(v),v(v)} 
for every v £ V. 

Evaluating Local Badness 
In this section, we design algorithm Loca I Eva I for evaluating 
L-Badness" (Obj, d). 

Let D = (V,E,p) be an M D P , a an F R strategy for 
D, and C: V —> L a labeling. Furthermore, let C-Obj: 
Dist(L) —> K - ° be the desired objective function. Algo­
rithm Loca I Eva I consists of several phases, following the 
definition of L-Badnessa(Obj, d): First, we use Tarjan's al­
gorithm (Tarjan 1972) to identify all B S C C s of Da. For 
each B S C C B, the invariant distribution IB is computed via 
the following system of linear equations: For each v £ B, 
we have a fresh variable Zy and equations expressing that 
z = z • ProbB and X/res zv = T n e vector I s is the 
unique solution of this system. 

The core of Loca I Eva I is Algorithm 1 computing 
E I s [Obj(Freqn) \ Init=v] for all v £ B and n < d by 
dynamic programming. Since for all n < d we have that 

ElB[Obj(Freqn)} = ^ lB(v)-ElB[Obj(Freqn) \ Init=v], 

Algorithm 1: The core procedure of Loca I Eva I 

for e B do 
S0-V = Vo 

so.vec = {0, • • •, 0} 
s0.vec[£(v0)]++ 
cur-map[so] = 1. 
for n £ { 1 , . . . , d} do 

for (s,p) £ cur-map do 
rsi[t)o][n] +=p • £-Obj(s.vec/n) 

if n < d then 
for (s, p) £ cur-map do 

for v £ B do 
s = s 
S .V = V 

s' .vec[C(v)]++ 
next-map[s'] +=p • a[s.v][v] 

swap(cur jrnap, next-map) 
next .map .clear () 

the computation of L-Badness17(Obj, d) is straightforward. 
Algorithm 1 uses two associative arrays (e.g., C++ un-

ordered_map), called cur-map and next-map, to gather in­
formation about the probabilities of individual paths. More 
specifically, the maps are indexed by states, where a state 
consists of an augmented vertex v £ B, corresponding to 
the last vertex of a path, and a vector vec of \L\ integers, 
corresponding to the numbers of visits to particular labels. 
The value associated to a state s is the total probability of 
all paths corresponding to s. The values E I S [Obj(Freqn) 
Init=v] are gathered in a 2-dimensional array rsl. Further 
details are given in (Klaska et al. 2023). 

Optimizing Local Badness 
In this section, we design an algorithm L o c a l S y n t for con­
structing an F R strategy a with memory M minimizing 
L-Badness° (Obj', d) for a given M D P D. The main idea be­
hind L o c a l S y n t is to construct and optimize a function si­
multaneously rewarding the following features of a: 

F l . Global satisfaction of Obj; 

F2. Stochastic stability of renewal times for families of aug­
mented vertices with the same label. 

F3. The level of determinism achieved by a. 

Intuitively, F l ensures that a achieves Obj globally, and F2 
in combination with F3 "encourage" the features of a caus­
ing a small difference between the global and the local sat­
isfaction. To understand the significance of F2, realize that 
the frequency of visits to augmented vertices with the same 
label is the inverse of the expected renewal time for this 
family. Hence, the local stability of the frequency of visits 
can be achieved by maximizing the stochastic stability (i.e., 
minimizing the standard deviation of) the renewal time. To 
understand the significance of F3, realize that for every de­
terministic F R strategy a, the value of L-Badnessa (Obj, d) 
is equal to m i n e Obj(Is) for a sufficiently large d. Hence, 
putting more emphasis on F3 yields strategies where aiv) 
is close to a Dirac distribution for many v, which may be 
advantageous when d is high. 
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Measuring F 1 - F 3 

In this section, we design efficient measures for F1-F3 and 
combine these measures into a single function Comb. 

Let D = (V, E, p) be an M D P , C: V -> L a labeling, and 
Obj a long-run average objective for D. Furthermore, let a 
be an F R strategy with memory M and B a B S C C of DA. 
Recall that I s is the invariant distribution of B, and BIB is 
the Markov chain determined by B and the initial distribu­
tion 1B. Furthermore, let RT(w) be the least i > l such that 
C{vi) = £(VQ). If there is no such i, we put RT{w) = oo. 
Hence, RT(w) is the number of edges needed to visit an 
augmented vertex with the same label as Init(w) (i.e., the 
Renewal Time to the initial label). 

Measuring F l The global dissatisfaction of Obj achieved 
by a in B1B is measured by Obj (1B)-

Measuring F2 Let V a r I s [RT \ C(Init)=£] be the condi­
tional variance of the Renewal Time to the initial label under 
the condition that a run is initiated in an augmented vertex 
with label I. If the probability of C(Init)=£ is zero, i.e, 1B 
assigns zero to all augmented vertices with label I, we treat 
V a r I s [RT \ C(Init)=£] as zero. Furthermore, we define the 
corresponding standard deviation 

SD(£) = \]x>axlB[RT I C(Init)=£]. 

Stochastic instability of renewal times caused by a in B1B 

is measured by the function 

Penalty^a, B) = 1B(£) • SD{£) 
£<EL 

where 1B{£) is the sum of all 1B (v) where v £ B and 
C(v) = £. That is, Penalty 1 is the weighted sum of all SD(£) 
where the weights correspond to the limit label frequencies. 

Measuring F3 The level of non-determinism caused by a 
in B1B is measured by the stochastic instability of Renewal 
Times separately for each augmented vertex. That is, we put 

Penalty2(a, B) = Y^ ^B(V) • \JxailB[RT | Init=v] 
v£B 

If the probability of Init=v is zero, we treat the correspond­
ing conditional variance as zero. 

Note that for every deterministic strategy we have that 
V a r I s [RT | Init=v] = 0 for every v, i.e., Penalty^ = 0. 
However, Penalty 1 is still positive i f the expected renewal 
times for the individual augmented vertices with the same la­
bel differ. The only "degenerated" case when Penalty j and 
Penalty2 are the same functions is when all vertices have 
pairwise different labels and every vertex is allocated just 
one memory state. 

Combining the measures Our LocalSynt algorithm at­
tempts to minimize the following function Comb (a) over 
all B S C C B of DA: 

{l-P--y)Obj(IB)+P-ci-Penalty 1(a,B)+-y-c2Penalty2(a,B) 

where f3,j £ [0,1] are weights such that f3 + 7 < 1 
representing the preference among F 1 - F 3 . Since the val­
ues of Obj(lB) may range over very different intervals than 

Algorithm 2: LocalSynt 

SolutionParameters Randomlnit 
for i G { 1 , . . . , Steps} do 

a *r- Softmax(SolutionParameters) 
Comb(a) <s— EvaluateComb(a) 
V Comb(a) <s— Gradient (a) 
SolutionParameters += Step (VComb (a)) 
Save Comb(a),a 

return a with the least Comb(a) 

Penaltyl and Penalty2, we also use the normalizing con­
stants c\ = (Obj(lB)+l)/(Penalty 1(a, B)+l) and c2 = 
(Obj(lB)+l)/(Penalty2(a, B)+l). 

Computing Comb 

In this section, we show that there exist three efficiently con-
structible systems of linear equations with unique solutions 
x, y and z such that the function Comb is a closed-form ex­
pression over the components of x, y, and z containing only 
differentiable functions. This allows us to compute the gra­
dient of Comb efficiently and apply state-of-the-art methods 
of differentiable programming to minimize Comb by gradi­
ent descent, which is the essence of LocalSynt functionality. 

For every v £ B and £ £ L such that 1B(£) > 0, let 
Xyt£ and yyt£ be fresh variables. For every Xyt£, we add an 
equation 

ro rfc(v) = £, 
v / \ l + J 2 U & B • %u,e otherwise. 

Then the system has a unique solution x where Xyte is the ex­
pected time for visiting an ^-labeled augmented vertex from 
v. Hence, E 1 b [RT | Init = v]=l + ^ _ £ S a(v)(u) • x % i , 
where £ = C(v). 

Similarly, for every y^^, we add an equation 

ro rfc(v) = £, 

yv,i \ l + J2ueBa(v)(u) • (2xute +yu,e) otherwise. 

Note that the above equation is linear and uses components 
of x in the coefficients. The system has a unique solution y 
where y\^ is the expected square of the time for visiting an 
^-labeled augmented vertex from v. Hence, 

ElB [RT2 I Init = v] = 1 + J2 • (2Su,i + Vu,t) 
u<EB 

The vector z corresponding to the invariant distribution I B 

is computed the same way as in Local Eva I. 
BothElB[RT I C(Init)=£] ami Z '•' / , ' / - | C(Init)=£] 

are weighted sums of E I s [RT | Init = v] and E I s [RT2 

Init = v] where the weights are expressions over the com­
ponents o f f . Since V a r [ X | Y] = E[X2 \ Y] - E2[X \ Y] 
for al l random variables X, Y, the conditional variances 
V a r l B [RT \ Init=v] and V a r I f l [RT \ C(Init)=£] are also 
expressible as closed form expressions over x, y, and z. 
Hence, Comb also has this property. 
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Figure 2: Strategies constructed for the graph of Fig . 1. Adding more memory to the state R helps. Best results are achieved for 
certain combinations of j3 and 7 where j3 + 7 does not exceed the threshold around 0.6. 

The LocalSynt Algorithm 

Our algorithm is based on differentiable programming and 
gradient descent, and it performs the standard optimization 
loop shown in Algorithm 2. For every pair of augmented 
vertices (v, u) such that (v, u) £ E, we need a parameter 
representing a{v){u). Note that i f v is stochastic, then the 
parameter actually represents the probability of selecting the 
memory state of u. These parameters are initialized to ran­
dom values sampled from LogUniform distribution (so that 
we impose no prior knowledge about the solution). Then, 
they are transformed into probability distributions using the 
standard Softmax function. 

The crucial ingredient of Loca ISynt is the procedure Eval-
uateComb for computing the value of Comb for the strat­
egy represented by the parameters. This procedure allows 
to compute Comb(a), and also the gradient of Comb(a) 
at the point corresponding to a by automatic differentia­
tion. After that, we update the point representing the cur­
rent a in the direction of the steepest descent. The inter­
mediate solutions and the corresponding Comb values are 
stored, and the best solution found within Steps optimiza­
tion steps is returned. Our implementation uses P Y T O R C H 
framework (Paszke et al. 2019) and its automatic differenti­
ation with A D A M optimizer (Kingma and B a 2015)). 

Observe that LocalSynt is equally efficient for general 
M D P s and graphs. The only difference is that stochastic ver­
tices generate fewer parameters. 

Experiments 

The system setup was as follows: C P U : A M D Ryzen 
93900X (12 cores); R A M : 32GB; Ubuntu 20.04. To sepa­
rate the probabilistic choice introduced by the constructed 
strategies from the internal probabilistic choice performed in 
stochastic vertices, we perform our experiments on graphs. 

Experiment I 

In our first experiment, we aim to analyze the impact of the 
j3,7 coefficients in Comb and the size of available memory 
on the structure and performance of the resulting strategy a. 

We use the graph D of F ig . 1(a) and the objective 
Distance^ with L2 norm where v(R) = | and v{M) = | . 
In our F R strategies, we allocate m < 4 memory states to 
the vertex R and one memory state to the vertex M. The 
coefficients f3,7 range over [0,0.5] with a discrete step 0.1. 
For every choice of j3, 7 , and m, we run LocalSynt 40 times 
with Steps set to 800 and return the strategy a with the least 
value of Comb found. Then, we use the Loca I Eva I algorithm 
to compute L-Badnessa (Distance^, d) for d £ { 3 , . . . , 10}. 

Discussion The plot of Fig . 2 (left) shows that 

1. increasing the size of memory m leads to better perfor­
mance (smaller L-Badnessa(Distance^, d)); 

2. setting , 3 = 7 = 0 produces worse strategies (for every m) 
than setups with even small positive values of f3,7; 

3. setting p + 7 > 0.5 leads to very bad strategies. 

The outcomes 1. and 2. are in full accordance with the intu­
ition presented in the section "Optimizing Local Badness". 
Outcome 3. is also easy to explain—when j3 or 7 is too 
large, the algorithm LocalSynt concentrates on maximizing 
stochastic stability of renewal times or achieving determin­
ism and "ignores" the L2 distance from v. For example, the 
worst strategy of Fig . 2 (left) obtained for m = 2, j3 = 0.5, 
7 = 0 "regularly alternates" between R and M, i.e., the 
renewal times of R and M are equal to 2 and have zero vari­
ance. This leads to local frequency ( | , \ ) , which is "far" 
from the desired v. 

We also provide plots of L-Badnessa(Distancev,d) 
where m and d are fixed and fj, 7 range over [0,0.5]. The 
plot for d = 5 and m = 3 is shown in Fig . 2 (right). A l l 
these plots (see (Klaska et al. 2023)) consistently show that 
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(&) 

L-Badness{Distancev, d) 

Figure 3: The structure of D4 {a), 1x4 (b), and Q4 (c). 

the best outcomes are achieved for certain combinations of j3 
and 7 where j3 + 7 is positive but below 0.6 (in Fig . 2 (right), 
the best outcomes are in yellow). 

Experiment II 

Here we aim to analyze the scalability of Local Eva I and 
LocalSynt and demonstrate that LocalSynt can produce so­
phisticated strategies for instances of non-trivial size. Since 
the running time of LocalSynt depends on the number of pa­
rameters, i.e., the number of augmented edges, we need to 
consider a scalable instance. 

For every n > 2, let Dn be a graph with vertices 
vi,..., vn and edges {vu Vi) and (vi, v ( i m o c i n ) + i ) for ev­
ery i < n. Every Vi is assigned m i n { i , \^~\} memory states. 
The desired frequency v is defined by v(vi) = i/s where 

s = . The structure of D4 is shown in F ig . 3(a), to­
gether with v (brown) and memory allocation (red). 

We consider the objective Distancev with the L2 norm, 
and we aim to optimize L-Badnessa(Distanceu,d) where 
d = s (the least d such that v is achievable in d consec­
utive states.) To evaluate the scalability of LocalEval and 
LocalSynt we run LocalEval 5 times for different choice 
of j3 and 7 and evaluate L-Badnessa(Distance„,d) using 
LocalEval and also a naive algorithm based on depth-first 
search (see (Klaska et al. 2023) for a more detailed descrip­
tion of the naive algorithm). In Table 2, for every n we report 
the number of parameters, the size of d, the average time of 
one Step of LocalSynt (i.e., one iteration of the main for 
loop of LocalSynt), one run of LocalEval, and one run of the 
naive evaluation algorithm (in sees). 

To evaluate the quality of strategies constructed by 
LocalSynt, we consider two natural strategies nn and gn 

(see F ig . 3 (b) and (c)). Both strategies perform an "ideal" 
number of self-loops on i > i , . . . , V[n/2] where the memory 
suffices. On the other vertices, nn performs \n/2] — 1 self-
loops deterministically and then selects randomly between 
the self-loop and the edge to the next vertex, while gn per­
forms a random choice in every visit. The probabilities are 
computed so that 1 = v. Hence, both nn and gn represent an 
"educated guess" for a high-quality strategy. 

For all n £ { 2 , . . . , 8}, we run LocalSynt 40 times with 
Steps set to 800 for all , 3 , 7 £ (0,0.5) with a discrete 
step 0.1, always collecting the strategy an with the mini-

n 7T n Qn cr„ ß 7 

2 0.15713 0.15713 0.15713 0.2 0.0 
3 0.11479 0.10255 0.11473 0.1 0.1 
4 0.19416 0.17131 0.10540 0.0 0.2 
5 0.14277 0.11762 0.10540 0.0 0.2 
6 0.17491 0.13985 0.08016 0.0 0.2 
7 0.13781 0.10456 0.10022 0.0 0.2 
8 0.15609 0.11436 0.10012 0.0 0.2 

Table 1: Strate gy <7„ outperforms irn and gn. 

n Par d Step LocalEval Naive 

4 25 10 2.12E-03 2.21E-04 2.74E-03 
5 61 15 2.71E-03 4.56E-03 1.21E+02 
6 79 21 2.21E-03 4.13E-01 timeout 
7 150 28 2.44E-03 1.98E+01 timeout 
8 182 36 2.50E-03 timeout timeout 
10 350 55 2.97E-03 timeout timeout 
12 599 78 6.43E-03 timeout timeout 
14 945 105 1.88E-02 timeout timeout 
16 1404 136 3.91E-02 timeout timeout 
18 1992 171 1.05E-01 timeout timeout 
20 2725 210 2.15E-01 timeout timeout 

Table 2: Running times in seconds, timeout = 900 sees. 

mal Comb value. The outcomes are shown in Table 1. In­
terestingly, an significantly outperforms both 7r„ and gn for 
all n > 4. The strategy an cannot be found "ad-hoc"; in 
most cases, the associated invariant distribution is different 
from v, which means that global satisfaction "traded" for 
local satisfaction. We also report the values of j3 and 7 for 
which the best strategy an was found by LocalSynt. 

Discussion Table 2 shows that LocalSynt can easily pro­
cess instances with thousands of parameters, while the scal­
ability limits of LocalEval are reached for d « 30. Hence, 
LocalEval cannot be used for strategy synthesis based on 
gradient descent because LocalEval would have to be in­
voked hundreds of times in a single run. Table 1 shows that 
LocalSynt can construct sophisticated strategies for non-
trivial instances. Details are in (Klaska et al. 2023). 

Conclusions 
The results demonstrate that non-trivial instances of the local 
satisfaction problem for long-run average objectives can be 
solved efficiently despite the NP-hardness of this problem. 
Experiment II also shows that the best strategy for Dn is ob­
tained by setting j3 = 0.0 and 7 = 0.2. Although LocalEval 
cannot evaluate the strategies obtained for large n's, there is 
a good chance that these strategies are better than the ones 
constructed ad-hoc. This indicates how to overcome the scal­
ability issues for other parameterized instances. 
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