J 2024

UV FeII emission model of HE 0413-4031 and its relation to broad-line time delays

ZAJAČEK, Michal, Swayamtrupta PANDA, Ashwani PANDEY, Raj PRINCE, Alberto RODRIGUEZ-ARDILA et. al.

Basic information

Original name

UV FeII emission model of HE 0413-4031 and its relation to broad-line time delays

Authors

ZAJAČEK, Michal (703 Slovakia, belonging to the institution), Swayamtrupta PANDA, Ashwani PANDEY, Raj PRINCE, Alberto RODRIGUEZ-ARDILA, Vikram JAISWAL, Bozena CZERNY, Krzysztof HRYNIEWICZ, Maciej URBANOWICZ, Piotr TRZCIONKOWSKI, Marzena SNIEGOWSKA, Zuzanna FALKOWSKA, Mary Loli MARTINEZ-ALDAMA and Norbert WERNER (703 Slovakia, belonging to the institution)

Edition

Astronomy and Astrophysics, EDP Sciences, 2024, 0004-6361

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

France

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.500 in 2022

Organization unit

Faculty of Science

UT WoS

001185810900029

Keywords in English

accretion; accretion disks; techniques: photometric; techniques: spectroscopic; quasars: emission lines; quasars: individual: HE 0413-4031

Tags

Tags

International impact, Reviewed
Změněno: 3/5/2024 10:13, Mgr. Marie Šípková, DiS.

Abstract

V originále

Context. FeII emission is a well-known contributor to the UV spectra of active galactic nuclei and the modeling of this part may affect the results obtained for the MgII λ2800 emission, which is one of the lines used for black hole mass measurements and cosmological applications. Aims. We tested different FeII emission models when modeling the UV emission of the intermediate-redshift quasar HE 0413−4031 to see how the use of a specific template affects the MgII λ2800 line properties and the measurement of the MgII λ2800 and UV FeII time delays with respect to the continuum. Methods. We used the 11-year monitoring of the selected quasar HE 0413−4031 with the South African Large Telescope (SALT), and we supplemented this monitoring with the near-IR spectrum taken with the SOAR telescope, which gave access to the Hβλ4861 and [OIII] λλ4959, 5007 emission lines at the rest frame and allowed for a precise measurement of the redshift. Results. A new redshift determination (z = 1.39117 ± 0.00017) using [OIII] λλ4959, 5007 gave a very different value than the previous determination based only on the UV FeII pseudocontinuum (z = 1.3764). It favors a different decomposition of the spectrum into MgII and UV FeII emissions. The line characteristics and the time delay of the MgII emission (224−23+21 days) are not significantly affected. However, in comparison with the previous analysis, the rest-frame UV FeII time delay (251−7+9 days) is consistent with the inferred UV FeII line full width at half maximum (FWHM) of 4200 km s−1 that is only slightly smaller than the MgII line FWHM. Hence the FeII-emitting material is more distant than the MgII-emitting gas in HE 0413−4031 by ∼0.023 pc (4700 AU). The inferred velocity shift of both MgII and UV FeII lines with respect to the systemic redshift is now rather low, below 300 km s−1. In addition, we constructed an updated MgII radius-luminosity (R − L) relation from 194 sources, which is more than double the previous sample. The MgII R − L relation is flatter than the UV FeII, optical FeII, and HβR − L relations. While the new decomposition of the spectrum is satisfactory, we see a need to create better FeII templates using the newest version of the code CLOUDY.

Links

GF23-04053L, research and development project
Name: Role mraků při využití zpoždění kontinua v aktivních galaxiích k měření rychlosti rozpínání vesmíru
Investor: Czech Science Foundation, Partner Agency (Poland)
GX21-13491X, research and development project
Name: Zkoumání žhavého vesmíru a porozumění kosmické zpětné vazbě (Acronym: EHU)
Investor: Czech Science Foundation