Detailed Information on Publication Record
2024
Biomechanical performance of dental implants inserted in different mandible locations and at different angles: A finite element study
THOMKOVA, Barbora, Petr MARCIAN, Libor BORAK, Marek JOUKAL, Jan WOLFF et. al.Basic information
Original name
Biomechanical performance of dental implants inserted in different mandible locations and at different angles: A finite element study
Authors
THOMKOVA, Barbora (203 Czech Republic), Petr MARCIAN (203 Czech Republic), Libor BORAK (203 Czech Republic), Marek JOUKAL (203 Czech Republic, belonging to the institution) and Jan WOLFF (203 Czech Republic)
Edition
JOURNAL OF PROSTHETIC DENTISTRY, NEW YORK, MOSBY-ELSEVIER, 2024, 0022-3913
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
30208 Dentistry, oral surgery and medicine
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 4.600 in 2022
Organization unit
Faculty of Medicine
UT WoS
001152274200001
Keywords in English
dental implants
Tags
International impact, Reviewed
Změněno: 29/4/2024 13:21, Mgr. Tereza Miškechová
Abstract
V originále
Statement of problem. Accurate implant placement is essential for the success of dental implants. This placement influences osseointegration and occlusal forces. The freehand technique, despite its cost-effectiveness and time efficiency, may result in significant angular deviations compared with guided implantation, but the effect of angular deviations on the stress-strain state of peri-implant bone is unclear. Purpose. The purpose of this finite element analysis (FEA) study was to examine the effects of angular deviations on stress-strain states in peri-implant bone. Material and methods. Computational modeling was used to investigate 4 different configurations of dental implant positions, each with 3 angles of insertion. The model was developed using computed tomography images, and typical mastication forces were considered. Strains were analyzed using the mechanostat hypothesis. Results. The location of the implant had a significant impact on bone strain intensity. An angular deviation of +/- 5 degrees from the planned inclination did not significantly affect cancellous bone strains, which primarily support the implant. However, it had a substantial effect on strains in the cortical bone near the implant. Such deviations also significantly influenced implant stresses, especially when the support from the cortical bone was uneven or poorly localized. Conclusions. In extreme situations, angular deviations can lead to overstraining the cortical bone, risking implant failure from unfavorable interaction with the implant. Accurate implant placement is essential to mitigate these risks. (J Prosthet Dent 2024;131:128.e1-e10)