ILGOVÁ, Jana, Sara ŠREIBR, Pavel DOBEŠ, Jiří VOREL, Jacek MARCINIAK, Jana HURYCHOVÁ, Martin KAŠNÝ and Pavel HYRŠL. In vivo vs in vitro activation of Heterorhabditis bacteriophora from the transcriptomics perspective. In 35th Symposium of the European Society of Nematologists. 2024.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name In vivo vs in vitro activation of Heterorhabditis bacteriophora from the transcriptomics perspective
Authors ILGOVÁ, Jana (703 Slovakia, guarantor, belonging to the institution), Sara ŠREIBR (276 Germany, belonging to the institution), Pavel DOBEŠ (203 Czech Republic, belonging to the institution), Jiří VOREL (203 Czech Republic), Jacek MARCINIAK (203 Czech Republic, belonging to the institution), Jana HURYCHOVÁ (203 Czech Republic, belonging to the institution), Martin KAŠNÝ (203 Czech Republic, belonging to the institution) and Pavel HYRŠL (203 Czech Republic, belonging to the institution).
Edition 35th Symposium of the European Society of Nematologists, 2024.
Other information
Original language English
Type of outcome Conference abstract
Field of Study 10608 Biochemistry and molecular biology
Country of publisher Spain
Confidentiality degree is not subject to a state or trade secret
Organization unit Faculty of Science
Keywords in English entomopathogenic nematodes; transcriptomics; infective juveniles; recovery
Changed by Changed by: doc. RNDr. Pavel Hyršl, Ph.D., učo 9982. Changed: 2/5/2024 23:26.
Abstract
Entomopathogenic nematodes (EPNs), such as Heterorhabditis bacteriophora, have gained recognition as effective biocontrol agents against insect pests, offering an eco-friendly alternative to chemical insecticides. This preliminary study delves into the molecular dynamics of H. bacteriophora infection, shedding light on the responses to host molecules. Invasion strategy of H. bacteriophora involves the active penetration of the host by third-stage larvae, also called infective juveniles (IJs). Upon contact with the host or its molecules, IJs start the process called activation or recovery, which involves the transition from the non-active stage to the infective one. Within a few hours after the host colonisation, IJs release symbiotic bacteria of the genus Photorhabdus, which cause host septicaemia and death. Under experimental conditions, the infection process and activation of IJs are often simulated by challenging IJs with various host-derived materials (such as tissue homogenate or haemolymph). This study aims to bridge the gap in understanding how in vitro activation of H. bacteriophora corresponds to the in vivo infection. We are conducting a comparative RNA-seq analysis at various time points throughout the in vitro activation and in vivo infection of the greater wax moth, Galleria mellonella. Our analysis focuses on five critical time points (3, 6, 9, 12, and 15 hours post-infection) to capture the dynamic changes in H. bacteriophora gene expression during IJs infection in vivo. In vitro activation involves exposure of IJs to G. mellonella-derived homogenates for three periods (3, 6 and 9 hours), simulating the interaction with host tissues. Recognizing the low recovery of IJs after in vivo infection, we employ a single-cell RNA NGS library preparation strategy, followed by sequencing at the Illumina NovaSeq 6000 platform. Differential expression analysis will identify key transcripts by mapping reads to a reference transcriptome. Our objective will be to evaluate the extent to which H. bacteriophora gene expression during in vitro activation mirrors the in vivo infection dynamics. This pilot data will contribute to the understanding of H. bacteriophora in vivo molecular strategies and address the relevance of in vitro activation models in studying the infection process.
Links
GA23-06457S, research and development projectName: Identifikace a funkční charakteristika bioaktivních molekul produkovaných entomopatogenními hlísticemi
Investor: Czech Science Foundation, Identification and functional characterization of bioactive molecules produced by entomopathogenic nematodes
PrintDisplayed: 21/7/2024 04:41