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Abstract 

Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are patho-
logically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic 
acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many 
important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification 
of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-
metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exo-
some biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising 
drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their pro-
tein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exo-
some biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological 
conditions.
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Introduction
Extracellular vesicles (EVs) belong to the group of het-
erogeneous membranous structures derived from all cell 
types, even those pathologically altered [1]. Depending 
on the cell type they originated from, EVs can contain 
various sets of specific proteins. Based on their size and 
biogenesis, EVs can be divided into three main groups: 
apoptotic bodies, ectosomes, and exosomes. Apoptotic 
bodies are released by cells that have undergone apop-
tosis and are 1,000–5,000 nm in diameter. Ectosomes, 

formed from plasma membrane outward budding (ecto-
cytosis), are 150–1,000 nm in diameter and include 
vesicles such as oncosomes and microvesicles [2, 3]. 
Exosomes are generated by the endolysosomal system by 
exocytosis of intraluminal vesicles (ILVs) formed within 
the multivesicular bodies (MVBs) and are, typically, 
30–150 nm in diameter [4].

EVs are nanosized particles formed by phospholipid 
membrane, that carry various sets of proteins, lipids, 
nucleic acids, glycans, and others that reflect the content 
of their cell of origin [5]. EVs are essential mediators of 
intercellular communication and delivery vehicles of 
molecular signals through the extracellular space. They 
play crucial roles in the homeostasis of healthy tissues 
and the progression of pathological states, including 
cancer, by stimulating cell proliferation, angiogenesis, 
metastasis, and other tumour-promoting processes. Via 
their content, EVs can regulate various signalling path-
ways [6, 7]. Cells in pathological conditions secrete large 
quantities of various EVs into body fluids, reflecting the 
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organism’s disease state. Therefore, these disease-specific 
EV surfaces and contents could be used as sensitive bio-
markers and have great potential as liquid biopsy agents 
for various diseases [8–10].

To understand how different types of EVs affect can-
cer development, accurate nomenclature is essential. The 
International Society for Extracellular Vesicles (ISEV) 
proposed the Minimal Information for Studies of Extra-
cellular Vesicles (“MISEV”) guidelines in 2014, which 
were updated four years later [11, 12]. The recommenda-
tion is to use the term “extracellular vesicle” as a “generic 
term for particles naturally released from the cell that 
are delimited by a lipid bilayer and cannot replicate” [11, 
13]. The term exosome was initially used to refer to a 
membrane vesicle released by reticulocytes during their 
maturation [4, 14]; now it is used to describe MVB-origin 
EVs [13]. In this review, we are mainly focused on cancer-
associated exosomes and their protein content, and dis-
cuss other EVs in comparison if relevant.

The structure and content of exosomes
The secretion of exosomes was originally proposed as a 
mechanism that serves to eliminate unnecessary pro-
teins from the cell [15]. However, in the 1990s, it was 
suggested that exosomes could play a role in intracellu-
lar communication, especially if connected to immune 
responses and cancer [16, 17]. This concept was sup-
ported later in 2007, when mRNAs and miRNAs were 
shown to be present in exosomes in their functional form 
and thus able to alter cell behaviour. This RNA was called 
“exosomal shuttle RNA” (esRNA) [18]. Besides esRNAs, 
exosome content includes several molecules, such as pro-
teins, lipids, other nucleic acids, and metabolites, highly 
reflecting the identity and molecular state of their cell of 
origin [19]. Approximately 4400 proteins, 194 lipids, 1639 
mRNAs and 764 miRNAs were identified in exosomes 
from different cell types, which points to their potential 
functional diversity and complexity [20, 21].

Exosomal cargo is protected from enzymatic degra-
dation as it is encapsulated within the lipid bilayer of 
exosomes. Exosomal proteins can maintain the native 
conformation and functionality (for example, exoso-
mal phosphoproteins were stable over a storage period 
of 5 years [22]). This makes them useful for the trans-
fer of intact and functional proteins between cells. The 
protein content of the exosomes can directly influence 
the behaviour of the targeted cells, their microenviron-
ment, and cell-to-cell communication [23, 24] (mRNA 
must be translated to have some influence). Therefore, 
exosomal proteins can provide better interpretable and 
more accurate information about the nature of com-
munication in the tumour microenvironment (TME), 

disease progression and the degree of TME transforma-
tion. The selection of exosome cargo is not a random 
process. It requires the involvement of complex sorting 
mechanisms [19]. The state of the cell that produced 
these EVs can influence the content and biogenesis of 
these vesicles by various molecular signals. For exam-
ple, tumour cells in a state of hypoxia secrete EVs that 
help to enhance angiogenic and metastatic potential 
[25]. Exosomes are potentially highly attractive objects 
for proteomic research as they are highly enriched in 
membrane and other proteins, which are poorly repre-
sented in most purely proteomic studies for their low 
concentrations or biophysical properties in isolated 
samples. Additionally, the presence of a specific set of 
proteins enables the recognition of specific cell types 
in the investigated sample and even sheds light on 
changes in cellular behaviour [19].

As mentioned above, exosomes are membrane vesi-
cles composed of a hydrophilic core surrounded by 
a  lipid bilayer which express, on the surface, vari-
ous ligands, receptors and other bioactive molecules 
derived from the source cells [26]. The key components 
of the lipid membrane are phosphatidylcholines (PC), 
phosphatidylethanolamines (PE), phosphatidylinositols 
(PS-PI), sphingomyelins (SM), gangliosides, ceramides, 
cholesterol, or diacylglycerols (DAG) [27–30]. The ratio 
of lipids in the exosomal membrane differs slightly 
from the composition of these lipids in the plasma 
membrane. In addition, exosome membrane “flip-flop” 
transitions are more common than in the plasma mem-
brane due to the lack of flippases [31]. Consequently, 
some EVs, such as apoptotic exosome-like vesicles [32] 
but also exosomes secreted by cancer cells, can expose 
phosphatidylserine (PS) on the surface [24, 33, 34]. 
Besides the structural role of lipids in the exosomal 
membrane, they are essential for exosome formation 
and release [35]. The lipid content of the exosomal core 
is mainly represented by phospholipids, glycolipids 
and free fatty acids, in contrast to microvesicles, which 
are enriched in ceramides and sphingomyelins [36]. 
Exosomes also carry surface receptors, adhesion mol-
ecules (ICAMs), integrins, tetraspanins (CD9,  CD63, 
CD81, CD82, CD53, and CD37) and other transmem-
brane or surface proteins. The protein content of 
exosomes is represented by the cytosolic and cytoskel-
etal proteins  (β-actin), enzymes (GTPases, proteases), 
heat shock proteins (HSP60, HSP70, HSP90), cytokines, 
endosome-associated proteins (Alix, Tsg101, Rab pro-
teins), or oncoproteins [37]. Some of these molecules, 
such as tetraspanins CD9, CD63, and CD81, or Tumour 
susceptibility gene 101 (Tsg101) and ALG-2-interact-
ing protein X (Alix), are considered exosomal markers 
[38–40].
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Exosome biogenesis and trafficking
The biogenesis of exosomes consists of many complex 
steps and is regulated by various intra- and extracellu-
lar signals. Firstly, the biogenesis mechanism involves 
the formation of an early endosome, which is derived 
from the plasma membrane by endocytosis. Secondly, 
the inward budding of the early endosome creates small 
intraluminal vesicles (ILVs), giving rise to multivesicu-
lar endosomes (MVEs), also called multivesicular bod-
ies (MVBs) or late endosomes [41]. Finally, these MVBs 
fuse with the plasma membrane and release ILVs into 
the extracellular space as exosomes [42] (see Fig.  1). 
This unique process differentiates exosomes from other 
EVs, such as apoptotic bodies, oncosomes, or necrotic 
blebs. Exosome biogenesis usually requires the endoso-
mal sorting complex required for transport (ESCRT), 
although an ESCRT–independent pathway has also 
been identified [43]. Exosome biogenesis allows the 
regulation of protein quality, as it enables cells to 
retrieve proteins from the plasma membrane selec-
tively. Released exosomes play a role in a wide range of 
processes, such as signal and molecular transmission to 
other cells, or extracellular matrix (ECM) remodelling 
[44].

The ESCRT machinery comprises around 30 pro-
teins assembled into 5 functional subcomplexes. The 
ESCRT-0 sequesters ubiquitinated cargo, ESCRT-I/II/
III are implicated in ILVs budding, and the VPS4 com-
plex is responsible for membrane scission. The ESCRT 
machinery enables both the selection of endocytic 
cargo incorporated into ILVs and the formation of ILVs 
themselves by membrane remodelling and scission. The 
cargo selection is mediated by the accessory Alix/Syn-
tenin/Syndecan complex, which also directs the bio-
genesis of ILVs [45, 46]. The formation of MVBs driven 
by ESCRT is critical not only for exosome biogenesis 
but also for lysosomal degradation via targeting ubiqui-
tylated proteins [47].

On the other hand, the ESCRT–independent pathway 
is driven by lipids and associated proteins like tetraspanin 
CD63 in a lipid-mediated process dependent on the self-
organising of lipid and cargo domains. The presence of 
ceramide, lysophospholipid and glycosphingolipid mol-
ecules on the limiting membrane induces spontaneous 
budding within the MVBs to produce ILVs and tetraspa-
nin sorting into ILVs [48–50]. Rab GTPase Rab31 drives 
and controls exosome biogenesis independent of ESCRT 
differently than ceramides and tetraspanins. Rab31, 
which enables ILV formation, inactivates Rab7 and sup-
presses the fusion of MVBs with lysosomes, thereby 
promoting the secretion of exosomes. Therefore, Rab31 
represents the key checkpoint for exosome biogenesis 
and determines its fate by balancing with Rab7 [51, 52].

Exosome secretion, uptake and cargo delivery
The microtubule network is responsible for the trans-
port of MVBs towards the plasma membrane. It requires 
altered actin polymerisation near the plasma membrane, 
followed by actomyosin cytoskeleton contraction [53]. 
The fusion of MVBs with the plasma membrane was 
found to be mediated by SNARE (SNAP receptor) com-
plex formed by vesicular v-SNARE and target membrane 
t-SNARE [54]. After the contact of these two membranes, 
the SNARE complex overcomes the fusion energy bar-
rier due to its association with the V-ATPase subunit V0. 
Exosomes are also rich in various Rab GTPases, which 
are believed to regulate membrane trafficking and secre-
tion, Rab4, Rab5, Rab11 and Rab27 in particular [55].

The mechanism of exosome release is classified as con-
stitutive or inducible, depending on the cell of origin. 
The constitutive secretion pathway is provided by Rab 
GTPases, heterotrimeric G-protein, and protein kinase D 
[56]. The inducible secretion is mediated by various types 
of physical, biological, and chemical stimuli, such as low 
pH, DNA damage, change in extracellular ATP levels, 
hypoxia, and increased intracellular Ca2+. For example, 
under the influence of hypoxia, cardiomyocytes release 
an increased number of exosomes [57]. Exosome secre-
tion also depends on lipid mediators, like diacylglycerol, 
and  is regulated by p53 via TSAP6 (Tumour suppres-
sor activated pathway-6) [47, 58]. However, fusion with 
the plasma membrane is not the only fate MVBs can 
undergo. MVBs can also be directed to lysosomes, where 
their content is degraded and not secreted from the cell. 
By fusion with autophagosomes, MVBs can give rise to 
amphisomes, which may fuse with the plasma mem-
brane and release their content extracellularly or can be 
degraded in lysosomes [45, 59].

The specific targeting towards recipient cells depends 
on the composition of the exosome surface. For instance, 
complex lipids influence exosome targeting in can-
cer cells. Sphingomyelin-enriched melanoma-derived 
exosomes exhibit enhancement in targeting within the 
TME [28]. Similarly, exosomes derived from glioblastoma 
cells enriched with phosphatidylethanolamine mainly 
target glioblastoma cells [60]. Exosomes mediate cell-to-
cell communication, both locally and systemically, and 
may pass multiple uptake and release cycles allowing 
them to access several layers of tissues of multiple organs, 
including the liver, kidney, lung, pancreas, spleen, colon, 
ovaries and last, but not least brain [61, 62]. In contrast, 
large EVs ( > 200µm) are predominantly accumulated in 
bones, liver and lymph nodes, which points to the fact 
that the transport of exosomes is also influenced by their 
size [63].

The internalisation of exosomes into the recipient cell 
can be provided through a non-specific process, such as 
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endocytosis, including caveolae-dependent and clath-
rin-dependent endocytosis, pinocytosis and phagocyto-
sis [64], or specifically by receptor-dependent pathway 
[53]. The specific targeting is proposed to be mediated 

by many proteins localised on the cell surface, including 
integrins, lectins, and T-cell immunoglobulin, or mucin 
domain-containing protein 4 (Tim4) [65, 66]. Tim4 is 
a transmembrane protein expressed on macrophages, 

Fig. 1  Exosome biogenesis, release, structure, content, and uptake by recipient cells. A Exosomes originate from the invagination of the plasma 
membrane, forming an early endosome. The inward budding of the endosome creates ILVs within the MVB (late endosome), which can be 
either degraded in lysosome, or secreted into the extracellular space as exosomes via ESCRT-dependent, or ESCRT-independent pathway, in which 
case lipid domains are involved. B Exosomes are formed by the lipid bilayer with integrated bioactive molecules at its surface, such as cell adhesion 
molecules, tetraspanins, cytokine or MHC receptors, and integrins. The exosome content comprises cytosolic and cytoskeletal proteins, enzymes, 
ESCRT components, various types of nucleic acids, and lipids. C The exosome uptake can be provided non-specifically by endocytosis and simple 
fusion with the plasma membrane or specifically by the ligand-receptor interaction
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which specifically binds the phosphatidylserine displayed 
on the EV surface [67]. Nevertheless, the uptake route 
may be more dependent on the recipient cell type than 
on the exosomes themselves [53]. However, exosomes 
can transmit information not only by integrating into 
the recipient cells but also by acting at the cell surface, 
for example, during an immune response. In this case, 
exosomes harbouring major histocompatibility complex 
(MHC)  can activate related T-cell receptors on T-lym-
phocytes [68].

Interestingly, exosome release and uptake by can-
cer cells can be highly influenced by a low pH in the 
TME. On the metastatic melanoma cells was shown, 
that compared to buffered conditions, low pH condi-
tions increased both, exosome release and uptake [69, 
70]. The study by Parolini et  al. also showed a change 
in exosome membrane rigidity in a low pH in associa-
tion with the increased amount of N-acetylneuraminyl-
galactosylglucosylceramide (GM3) and sphingomyelin 
(SM), which are known to be parts of membrane micro-
domains, also known as lipid rafts. This elucidates the 
increased fusion capacity of exosomes in a low pH, as 
sphingomyelin modulates the efficiency of membrane 
fusion [69, 71]. In addition, the amount of EVs and their 
content can be influenced by the autophagy machin-
ery [34, 72]. The secretion of pro-angiogenic EVs during 
hypoxia is dependent on the autophagy-related protein 
GABARAPL1 [73]. The starvation of cancer cells signifi-
cantly altered the composition of the protein content of 
phosphatidylserine-positive EVs (PS-EVs) produced by 
these cells. Starvation increased the exosomal abundance 
of matrix metalloproteinase 13 (MMP13), which can 
promote angiogenesis, and decreased the abundance of 
periostin and regucalcin (RGN) in PS-EVs [34]. Secreted 
POSTN can promote cancer stemness in head and neck 
cancer, and RGN promotes dormancy in cancer cells [74, 
75].

Exosomal proteins as signal molecules
Recently, a growing body of evidence has emerged to 
support the involvement of exosomes in the regulation 
of a variety of signalling pathways, including WNT and 
KRAS signalling [76] or PI3K/AKT or MAPK/ERK path-
ways [77]. These pathways can influence stem cell mainte-
nance, cell differentiation, tissue repair and regeneration 
processes. Consequently, exosomes have important sig-
nalling roles in affecting their surroundings, the recipient 
cells or even distant environment [78]. Exosomal proteins 
can contain growth factors and cytokines that trigger 
signalling pathways promoting cell growth, prolifera-
tion, or angiogenesis. For example, exosomes containing 
EGFR influence the liver microenvironment, facilitating 
the metastasis of gastric cancer to the liver [79]. Proteins 

involved in drug efflux transport, like P-glycoprotein, 
can be packaged within exosomes, protecting cells from 
chemotherapy agents [80]. Some types of exosomes can 
carry hormonal signals, such as steroid hormones, which 
have been detected in urinary exosomes [81]. Exosomal 
proteins can also deliver activation signals to recipient 
cells. Immune cells can be stimulated by exosomes from 
antigen-presenting cells (APCs) like macrophages and 
dendritic cells (DCs). These exosomes carry MHC mol-
ecules with antigens on their surface. Their uptake by the 
T-cell receptor (TCR) of specific T-cells subsequently 
leads to T-cell activation [82]. Exosomes can contribute 
to inflammatory signalling by transporting pro-inflam-
matory or anti-inflammatory cytokines [83] and may also 
carry immunomodulatory proteins, such as programmed 
death-ligand 1 (PD-L1), which can suppress the activ-
ity of cytotoxic T-cells, leading to immune evasion by 
tumour cells [84].

Many proteins identified in exosomes including lactate 
dehydrogenase A (LDHA), annexin A1/2 (ANXA1/2), 
or HSP90, are known to be mutated in multiple cancer 
types [21]. Specifically, exosomal extracellular matrix 
protein 1 (ECM1) was found to promote progression and 
even metastatic invasion in most cancers. Thus, ECM1 is 
thought to be an indicator of increased metastatic poten-
tial of tumour cells and was linked to poor prognosis 
[85, 86]. Another protein identified in exosomes, alpha-
2-HS-glycoprotein (AHSG), was found to promote breast 
cancer progression and was associated with the risk of 
colorectal carcinoma and non-small cell lung cancer 
(NSCLC) [87–89].

Some membrane proteins were found to possess thera-
peutic properties, but those are achievable only if these 
proteins remain in their native, or close to native con-
formation. Fortunately, exosomes can act as scaffolds for 
membrane proteins, thus they can be maintained in their 
native state [90]. For example, TNF-related apoptosis-
inducing ligand (TRAIL) located on the exosomal surface 
could deliver apoptosis signals to tumour cells and pro-
mote apoptosis [91].

EVs are, among other processes, involved in uncon-
ventional protein secretion (UPS) [92]. This mechanism 
includes proteins lacking a signal sequence in their gene, 
which enables them to enter the ER—Golgi apparatus 
(GA) conventional pathway, such as interleukin-1β, fibro-
blast growth factor 2 (FGF-2), or bacterial enzymes [93, 
94]. These proteins are essential molecules that function 
in cell signalling, immune modulation and many other 
extracellular pathways [95, 96]. The fact that EVs are pre-
sent in several body fluids enables them to trigger bio-
logical responses in distant locations, such as metastatic 
sites, and supports their potential as biomarkers and 
therapeutic vehicles [25, 97, 98].
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Exosomal proteins in cancer progression
Both tumour and stromal cell-derived exosomes are 
implicated in processes important for all stages of can-
cer progression, including tumour growth and cell pro-
liferation, cell death avoidance, angiogenesis, immune 
evasion, invasion and metastasis, or even therapy resist-
ance (see Fig.  2). Cancer cells secrete higher amounts 
of exosomes than normal cells, these exosomes are of 
altered composition. Several oncogenes and tumour 
suppressors have been found that are implicated in the 
regulation of exosomal biogenesis and production [99]. 
In addition, tumour cells can reprogram their metabo-
lism in favour of glycolysis by enhancing the activity of 
glucose transporters. Increased glucose uptake leads 
to the elevation in lactate production through aero-
bic glycolysis and, thus, to intracellular accumulation 

of protons. This process is called the Warburg effect 
[100]. Accumulated protons are actively transported 
into the extracellular microenvironment via vacuolar 
ATPase (V-ATPase), Na+/H+ exchanger (NHE), mono-
carboxylate transporters (MCTs), and carbonic anhy-
drase (CAs) [101]. Elevated extracellular levels of acidic 
metabolites then lead to a lowering in extracellular pH. 
Low pH condition is considered one of the hallmarks of 
cancer, which can potentially influence exosome secre-
tion and uptake [70, 102]. Moreover, exosomes released 
in acidic conditions (pH 6.0) were found to contain 
higher amounts of certain protein categories engaged 
in focal adhesion, actin cytoskeleton regulation, leuko-
cyte migration through endothelia, or cell morphology 
modification. These molecules include H-Ras (Harvey 
rat sarcoma virus), N-Ras (Neuroblastoma RAS viral 
oncogene homolog), GANAB (glucosidase II alpha 

Fig. 2  The role of exosomal proteins in specific hallmarks of cancer. Both stromal cell and cancer cell-derived exosomes are implicated in processes 
promoting cancer progression. These include epithelial-mesenchymal transition (EMT), angiogenesis, activation of cancer-associated fibroblasts 
(CAFs), immune evasion, polarisation of tumour-associated macrophages, insensitivity to cell death signals, pre-metastatic niche formation 
and metastasis, and even therapy resistance. Treg represents an immunosuppressive type of CD4 + T-cells. Treg can suppress anticancer immunity 
and cause immune evasion
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subunit), HSP90B1 (heat shock protein 90 beta family 
member 1), TIMP3 (tissue inhibitor of metalloprotein-
ase-3) and other proteins, which are also linked to met-
astatic melanoma patient’s poor prognosis [70, 103].

As mediators of cell-to-cell communication, exosomes 
play a pivotal role in the tumour microenvironment 
(TME). Various bioactive molecules loaded to exosomes 
are necessary signals for reprogramming of TME in 
favour of cancerogenesis [104]. For example, delta-like 
4 protein (DLL4) increases vessel branching and pro-
motes cancer-associated modifications of the TME 
[105]. DLL4 was associated with tumour aggressiveness 
and an unfavourable clinical outcome in colorectal can-
cer patients [106]. Integrins are a family of proteins that 
direct exosomes to specific tissues, thus being partly 
responsible for premetastatic niche formation and meta-
static tropism during breast cancer development [107]. 
Exosomal transforming growth factor-beta (TGFβ)  trig-
gers fibroblast and mesenchymal stem cell differentiation 
into myofibroblasts, promoting cancer proliferation and 
invasiveness, for example, in prostate cancer [108, 109]. 
Exosomal tetraspanin 8 (Tspan8) promotes angiogenesis 
in adenocarcinoma through increasing endothelial cell 
proliferation, migration and sprouting [110].

The TME is comprised of diverse cell types, such as 
endothelial cells, fibroblasts, and immune cells, with vari-
ous functions, including impact on cancer development 
and progression [111]. Because of its heterogeneity and 
adaptability, the TME is partly responsible for therapy 
resistance [112]. The recruitment of immune cells into 
the TME is governed by dynamic signalling, part of which 
are exosomes [113]. Tumour-derived exosomes (TDEs) 
can directly influence the differentiation and activity of 
NK (natural killer) cells, macrophages, T-cells and B-cells 
[114]. Fibroblasts are an integral part of the TME. They 
play a critical role in maintaining homeostasis in con-
nective tissues by producing extracellular matrix (ECM) 
components and various cytokines. Fibroblasts are usu-
ally in a quiescent state, as their levels of proliferation and 
metabolic activity are low [115]. In response to cancer 
cell presence, stromal fibroblasts can be activated into 
cancer-associated fibroblasts (CAFs) that can promote 
invasive growth and metastasis [116]. CAFs are char-
acterised by morphological features, such as spindle 
shape and lack of expression of non-mesenchymal cell 
markers typical for epithelial, endothelial, immune, or 
neuronal cells [117, 118]. CAFs express specific protein 
markers, such as fibroblast activation protein α (FAP), 
α-smooth muscle actin (α-SMA), fibroblast-specific pro-
tein 1 (FSP1), podoplanin (PDPN), and platelet-derived 
growth factor receptor (PDGFR) [115, 119]. CAFs also 
produce a variety of proinflammatory and inflammation-
activating factors, like nuclear factor kappa B (NF-κB), 

IL-6, FGF-2 (also known as bFGF), or TGFβ [120]. The 
mechanism of fibroblast activation is still not well under-
stood. However, TDEs are believed to be important fac-
tors promoting CAF activation and proliferation, as they 
contain TGFβ and activate SMAD-dependent signalling 
[121, 122]. Following the interaction with TDEs, mesen-
chymal stem cells (MSCs) might also give rise to CAFs. 
Exosomes secreted from breast cancer cells (MCF-7, 
or MDA-MB-231 cells) induced the differentiation of 
adipose-derived mesenchymal stem cells into the myofi-
broblastic type of CAFs. This process is accompanied by 
the increased secretion of CAF-produced factors, such as 
vascular endothelial growth factor (VEGF), stromal cell-
derived factor 1 (SDF-1), and TGFβ, which are engaged 
in tumour progression and metastasis regulation [123] as 
CAFs can contribute to the establishment of a pre-meta-
static niche [124, 125].

Exosomal CD151 and Tspan8 are essential for can-
cer cells and CAFs communication with a contribution 
to ECM remodelling. TDEs derived from lung-tropic 
tumours express high levels of specific integrins, α6β1 
or α6β4, which enable TDEs to bind to lung fibroblasts, 
leading to the formation of pre-metastatic niche in lung 
[107, 126]. Exosomes are key players not only in CAF 
activation but also in the crosstalk between CAFs and 
tumour cells because CAF-secreted exosomes can affect 
the tumour phenotype via their specific cargo [120]. 
These exosomes can fuel cancer cell metabolism by trans-
porting various metabolites, like amino acids, lipids, 
Krebs cycle metabolites, or even mitochondria [127, 128].

Angiogenesis
Angiogenesis is the process of forming new blood ves-
sels, and it has a pivotal role in tumour progression to 
advanced stages of cancer (neovascularisation is nec-
essary when the tumour volume exceeds 1  mm3) [129], 
including metastatic site formation. The formation of 
new vessels from pre-existing ones is induced by an 
imbalance between pro- and anti-angiogenic factors, 
VEGF overproduction, in particular. Cancer cells can 
obtain angiogenic phenotype in the process called angi-
ogenic transition, which leads to uncontrolled produc-
tion of proangiogenic factors and excessive angiogenesis. 
Manipulation of angiogenesis has become one of the 
approaches for cancer therapy, although its current effi-
cacy is limited [130]. Specifically, bevacizumab is a widely 
used angiogenesis inhibitor for metastatic colorectal car-
cinoma therapy [131]. According to numerous studies, 
exosomes can accelerate angiogenesis via their cargo.

An important factor significantly involved in angiogen-
esis is TGFβ-I. The study on head and neck squamous 
cell carcinoma (HNSCC) cell lines reveals that TGFβ-
enriched TDEs are major factors driving angiogenesis 
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in the TME [132]. Surprisingly, TDEs promote TGFβ-
signalling not only in endothelial cells but also in other 
cell types within the TME, such as macrophages. TDEs 
enriched in TGFβ promote the differentiation of non-
activated macrophages into a  tumour-associated 
macrophage-like (M2-like) phenotype, which is proan-
giogenic [133]. These TGFβ-enriched exosomes might be 
promising targets in anti-angiogenic therapy via block-
ing TGFβ interactions using mRER-mediated silencing. 
TGFβ signalling is blocked by neutralising extracellular 
TGFβ by mRER [134]. mRER is a newly developed TGFβ 
inhibitor that acts as a ligand trap for TGFβ and signifi-
cantly inhibits angiogenesis [133]. Due to its high effi-
ciency even in picomolar concentrations and small size, 
mRER enables better penetration of dense tissues, for 
example, the extracellular matrix [135].

The protein content of TDEs, including various pro-
angiogenic factors, widely differs in distinct types of can-
cer. Specifically, glioblastoma-derived exosomes carry 
angiogenin, VEGF, TGFβ, IL-6, IL-8, and tissue inhibi-
tor of metalloproteinase-1/2 (TIMP-1/2), which regulate 
MMP activity [136, 137]. In nasopharyngeal carcinoma, 
exosomes are highly enriched in intercellular adhesion 
molecule-1 (ICAM-1), CD44 variant isoform 5 (CD44v5) 
and matrix metalloproteinase 13 (MMP-13), in contrast, 
angio-suppressive protein TSP-1 is downregulated in 
these exosomes [138, 139]. Exosomes derived from mul-
tiple myeloma contain VEGF, bFGF, MMP-9, hepatocyte 
growth factor (HGF), and serpin E1 [140]. In lung adeno-
carcinoma, exosomes enriched in sortilin (also known 
as neurotensin receptor 3, NTSR3) might upregulate 
the level of expression of some pro-angiogenic proteins, 
namely endothelin-1, IL-8, thrombospondin-2 (TSP-2), 
uPA, and VEGF. Sortilin also promotes the release of 
TDEs themselves and may be useful as a diagnostic and 
prediction marker of cancer progression [141, 142]. Exo-
somal annexin II promotes angiogenesis in breast cancer 
by acting as a co-receptor for tissue plasminogen activa-
tor (tPA) [143]. In bladder cancer exosomes, EGF-like 
repeats and discoidin I-like domain-3 (EDIL-3), which 
is essential in angiogenesis and vascular development, is 
overexpressed [144].

As tumour grows, the demand for oxygen and nutrients 
increases. Existing blood vessels may not be sufficient to 
meet this demand and the formation of new blood vessels 
through neoangiogenesis may not always keep pace with 
the rapid growth of the tumour mass, leading to the per-
sistence of hypoxic regions within the tumour. Hypoxia is 
one of the critical conditions responsible for the influence 
on exosome biogenesis, their release and content, hence 
on cancer progression. The adaptation of cells to reduced 
oxygen supplies is provided by hypoxia-inducible factors 
(HIFs) [145]. High expression of HIF-1α contributes to 

the heterogeneity of tumours and more aggressive phe-
notype [146]. The HIF-1 pathway acts as a key regulator 
of angiogenesis in both physiological (e.g., embryonic 
development, wound healing) and pathological (e.g., can-
cer, chronic inflammation) processes. HIF-1 works syn-
ergistically with other pro-angiogenic factors, namely 
VEGF, placental growth factor (PIGF), and angiopoietin 
1/2 and upregulates their expression [147]. HIF-1 can be 
activated not only by hypoxia but also by genetic altera-
tions in malignant cells that block HIF-1α ubiquitination, 
and therefore its proteasomal degradation [148]. Specifi-
cally, the deletion of tumour suppressor genes like p53, 
p21, pRb, or PTEN leads to HIF-dependent stimulation 
of VEGF and, thus, to angiogenesis stimulation [149]. 
Knowing that, HIF-1 seems to be a  promising thera-
peutic target for many diseases linked to angiogenesis, 
including cancer [147]. Furthermore, HIF-1α induces 
exosome release via transactivating the small GTPase 
Rab22A in breast cancer [150]. Hypoxia-regulated exo-
some secretion in different tumours can be induced by an 
actin dynamics regulator RHO-associated protein kinase 
(ROCK), or calpain, which is responsible for membrane 
phospholipids asymmetry and membrane bending [151]. 
The hypoxic state causes a higher secretion of TDEs of 
altered content [152]. Alterations in exosome cargo 
under hypoxic conditions mediate tumour microenvi-
ronment remodelling and promote tumour progression, 
including immune evasion, angiogenesis, metastasis, and 
therapy resistance. The key proteins loaded to hypoxic 
exosomes include, for example, HIF-1α (nasopharyngeal 
carcinoma) [153], lysyl oxidases, PDGFs, thrombospon-
din-1 (TSP-1), plasminogen activator inhibitor 1 (PAI1), 
caveolin-1 (all in glioblastoma) [154–156], annexin II 
(prostate cancer) [157], or signal transducer and activator 
of transcription 3 (STAT3) (ovarian cancer) [152].

Cell death and proliferation
The replicative immortality of cancer cells is often 
accompanied by an altered sensitivity to regulated cell 
death (RCD), which includes apoptosis, necroptosis, fer-
roptosis, and pyroptosis [158]. RCD encompasses the 
organised demise of cells under the control of specific 
genes and molecular pathways, aiming to uphold home-
ostasis. Cancer is, among others, characterised by dys-
regulated cell death and increased proliferation of cancer 
cells. Typically, cancer cells sustain proliferative activity 
through the activation of the PI3K/AKT (phosphatidylin-
ositol 3-kinase/protein kinase B, also PKB) or MAPK/
ERK (mitogen-activated protein kinase/extracellular sig-
nal-regulated kinase) pathways. These pathways can be 
directly activated by TDEs. For example, in NSCLC, blad-
der and prostate cancer, PI3K/AKT is activated, while in 
gastric cancer, both the PI3K/AKT and the MAPK/ERK 
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signalling pathways are activated by TDEs [159]. TDEs 
are also able to support evasion from growth suppression. 
However, the role of TDEs in this process is less defined. 
For example, TDEs could downregulate growth suppres-
sion via delivering exosomal oncogenic H-Ras and N-Ras 
transcripts or Rab proteins [160]. The replicative immor-
tality can be obtained by the upregulation of telomerase, 
which is stimulated by various transcription factors and 
coregulators. Factors that significantly modulate telomer-
ase activity, such as c-Myc, p53 and β-catenin, are known 
to be TDE cargo, but a direct role of exosomes in telom-
erase activation is not known [159].

With ongoing research, it is becoming increasingly 
apparent that EVs possess the ability to modulate cell 
death responses in recipient cells. These EVs can be 
either derived from living cells or from apoptotic cells 
themself. For example, exosomes with membrane-
bound TNF-α produced by fibroblasts can inhibit acti-
vation-induced cell death (AICD) in CD4+ T-cells [161]. 
Similarly, AICD of T-cells can be triggered by Fas ligand-
bearing exosomes [162]. Exosomes derived from N-myc 
amplified neuroblastoma cells enhance the survival of 
non-N-myc amplified cells by inducing chemoresist-
ance to doxorubicin [163]. On the other hand, colorectal 
cancer cells can induce apoptosis of T-cells through the 
release of proapoptotic microvesicles [164]. Additionally, 
TDEs can contain inhibitors of apoptosis (IAP) such as 
survivin, XIAP, cIAP1 or cIAP2 [165], which can inhibit 
apoptosis in cancer cells. Bladder cancer TDEs were 
shown to inhibit apoptosis through the upregulation of 
Bcl-2 and cyclin D1, and Bax and caspase-3 downregula-
tion in target cells [166].

A newly discovered group of EVs released during apop-
tosis, called apoptotic exosomes (ApoExos), may repre-
sent a significant player in communication and signalling 
in the TME. ApoExos are implicated in diverse patho-
physiological processes, including vascular homeostasis, 
sterile inflammation, as well as proliferation and survival 
of cancer cells [167], and are released as a consequence 
of pre-apoptotic stress or post-apoptotic necrosis [168]. 
Autolysosomes were also identified as a site of Apo-
Exos biogenesis, and caspase-3 as a key regulator of the 
secretion of various types of EVs, including ApoExos 
[169]. In glioblastoma, a highly aggressive brain can-
cer, it has been discovered that specific components of 
the spliceosomes present in ApoExos facilitate tumour 
cell proliferation and confer resistance to therapy [170]. 
ApoExos widely express exosomal marker CD63, lyso-
somal marker LAMP1 (lysosomal associated membrane 
protein 1), and HSP70, which is commonly expressed 
under apoptotic conditions [167]. A crucial role in regu-
lated cell death, apoptosis and pyroptosis in particular, is 
played by a group of cysteine aspartic proteases known as 

caspases (casp), classified as apoptotic (casp-3/6/7/8/9) 
and inflammatory (casp-1/4/5/12) [171]. Caspases play a 
part in EV biogenesis, cargo loading and processing and 
can also be loaded into exosomes. For example, casp-3 
dependent intra-vesicular cleavage of Bcl-xL (B-cell lym-
phoma-extra-large) is required for the uptake of EVs by 
malignant blood cells. Casp-3 inhibition then results in 
reduced cell proliferation of recipient tumour cells [172]. 
Targeting caspases as novel anticancer therapy is being 
currently developed with a focus on small drugs or gene 
editing [173].

Necroptosis is defined as a regulated form of cell 
death accompanied by inflammation. The activation of 
necroptosis could also mediate the immune escape of 
cancer cells and the rise of metastasis through the attrac-
tion of tumour-associated macrophages, for instance, 
in pancreatic cancer cells by releasing CXCL5 (C-X-C 
motif chemokine 5) [174, 175]. Surprisingly, necrop-
totic cells are also able to release EVs loaded with vari-
ous cargo, including proteome unique for necroptotic 
EVs. Specifically, casp-8, mixed lineage kinase domain-
like kinase (MLKL), charged multivesicular body pro-
tein 4B (CHMP4B), ESCRT-III components, several Rab 
proteins (Rab5A/B/C), SNAREs, flotillin-1/2, and lipid-
raft-associated proteins are detected in higher levels in 
necroptotic EVs. In addition, necroptotic EVs induce the 
secretion of pro-inflammatory molecules, such as IL-6, 
TNF-α, and CCL2 (C–C motif chemokine ligand 2) [176, 
177]. Since many cancers are associated with a decrease 
or absence of necroptotic factors, which leads to necrop-
tosis resistance, necroptosis appears to be a promising 
target for cancer therapy [177]. TDEs preferentially tar-
get malignant cells, as will be discussed later, and can also 
be engineered to start the necroptosis pathway. A novel 
therapeutic strategy proposed a method for CRISPR/
Cas9 delivery via exosomes. In principle, two CRISPR/
Cas9 vectors might target and inactivate IAP1/2 (inhibi-
tor of apoptosis protein 1/2) and casp-8, resulting in 
necroptosis activation [178].

Another form of RCD, ferroptosis, is characterised by 
an iron-dependent accumulation of lipid hydroxyperox-
ides and is regulated by glutathione peroxidase 4 (GPX-
4). The intracellular iron homeostasis contributes to 
ferroptosis sensitivity in diverse cells. Since free iron lev-
els vary between various stages of cancer (metastatic vs. 
non-metastatic cells), differences in ferroptosis sensitivity 
are expected. To set an example, breast cancer cells can 
resist ferroptotic cell death by upregulating iron export 
out of the cell, for instance, via exosomes. This resistance 
can be suppressed by a blockage of prominin 2, a pentas-
panin protein that promotes MVBs formation, and thus 
iron secretion via exosomes [179]. In the TME, ferrop-
tosis drives macrophage polarisation and thus promotes 
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tumour growth. Specifically, extracellular protein K-ras 
was found to be packed into TDEs that are uptaken into 
macrophages. K-ras uptake leads to a switch from M1 to 
M2 macrophage phenotype and cancer progression. Sim-
ilarly to necroptosis, ferroptosis-inducing components, 
such as erastin, can be loaded into exosomes to target 
cancer cells [180]. For instance, imidazole ketone erastin 
(IKE) reduced tumour growth by inducing ferroptosis in 
a diffuse large B cell lymphoma (DLBCL) mouse xeno-
graft model [181].

Immune system, inflammation, and immune evasion
Immune evasion in cancer refers to the ability of cancer 
cells to evade or escape recognition and attack by the 
immune system. Inflammation and immune evasion are 
interconnected processes that play crucial roles in can-
cer development and progression. For example, chronic 
inflammation can suppress cytotoxic T-cell activity and 
was associated with tumour progression [182, 183]. TDEs 
are known to be strongly involved in these immunomod-
ulatory processes. Cytokines, small proteins, which 
are key mediators of immunity and inflammation, are 
extensively associated with exosomes. These cytokines 
include IL-1α, IL-1β, IL-6, IL-8, IL-18, TNF-α, COX-2 
(cyclooxygenase 2), VEGF, CCL2, CCL3, CCL4, CCL5, 
CCL20 [184, 185]. The proinflammatory response may 
also be stimulated by HSP70, which is elevated in cancer 
exosomes. HSP70 enriched exosomes can trigger NF-κB 
activation and TNF-α release or increased IFN-γ and 
IL-13 production [185, 186]. The group of aminoacyl-
tRNA synthetases (ARSs) is also involved in immune and 
inflammatory modulation, angiogenesis, or apoptosis if it 
occurs extracellularly. Specifically, lysyl-tRNA synthetase 
(KRS) is secreted via colorectal cancer cell-derived 
exosomes, which induces proinflammatory cytokines 
production [187].

Tumour cells are capable of escaping the immune sys-
tem reaction with the help of tumour-infiltrating regu-
latory T-cells (Tregs) by releasing immunosuppressive 
cytokines, namely IL-10 and TGFβ1 [188]. TDEs enable 
Treg generation and expansion, thus promoting cancer 
progression. Moreover, Th17-cells (CD4+ T-lymphocytes 
secreting essential amounts of IL-17A [189]) might also 
induce immunosuppression and angiogenesis to facilitate 
tumour progression, or they can recruit immune cells to 
promote antitumour immune response [190]. The role 
of Th17 in the context of tumour growth depends on 
the ratio of Treg/Th17 [191]. TDEs also highly express 
tumour antigens on their surface. This characteristic has 
led to the suggestion that they could serve as tumour vac-
cines. However, they can also suppress T-cell signalling 
molecules and induce apoptosis in T-lymphocytes. For 
instance, ovarian cancer cell-derived exosomes exhibit 

FasL to suppress the immune response by inhibiting 
T-cells and inducing their apoptosis [192].

TNF-α is a pro-inflammatory cytokine mainly pro-
duced by macrophages, NK cells, and T-cells, but also by 
non-immune cells like fibroblasts, endothelial cells, and 
neurons. TNF-α exhibits a dual role in relation to cancer. 
On the one hand, the anticancer property of TNF-α is to 
induce cancer cell death, but on the other hand, TNF-α 
also stimulates cell proliferation, migration and angio-
genesis and is highly overexpressed in many cancers [193, 
194]. Since TNF-α is often present in TDEs, for exam-
ple, in colorectal carcinoma, there may be a beneficial 
effect of decreasing TNF-α in anti-cancer therapy [195]. 
Natural killers (NK) are a group of cells involved in anti-
tumour immune response via the natural killer group 2 
member D (NKG2D) activating receptor [196]. Loss of 
the NKG2D receptor or its function leads to immune 
evasion. TDEs can contribute to NK-cells activity sup-
pression by the expression of NKG2D ligands, which 
depress NKG2D receptors on NK-cells and inhibit their 
cytotoxicity [197].

In addition, tumour-derived exosomes are known to 
inhibit the maturation and differentiation of monocytes 
(monocytes give rise to macrophages and dendritic 
cells), and consequently induce immunosuppression. The 
mechanism of immunosuppression might be dependent 
on the protein composition of exosomes, namely TGFβ, 
IL-6, or prostaglandin E2 (PGE2) [198]. To set an exam-
ple, the secretion of IL-6, which functions in the PI3K/
AKT/mTOR pathway [199], by TDEs inhibits the differ-
entiation of bone marrow myeloid precursors into DCs. 
DC maturation can also be affected by the intake of exo-
somal TGF-β1 by immature DCs [200]. Furthermore, 
TDEs can influence macrophages to switch into polarised 
M2 phenotype. For example, TDEs derived from triple-
negative breast cancer (TNBC) play role in M2 mac-
rophages polarisation, which benefits tumour growth 
and lymph-node metastasis formation [201]. M2 mac-
rophages then secrete high amounts of cytokines, growth 
factors and enzymes, including already mentioned VEGF, 
PDGF, TGFβ, and some MMPs, that facilitate immu-
nosuppression, angiogenesis, metastasis, or treatment 
resistance [202, 203]. Monocytes that fused with TDEs 
possess an immunosuppressive effect, which leads to a 
high CD14 expression. CD14+ monocytes (but without 
HLA-DA expression) were proven to be increased in 
the serum of many cancer patients as tumour-induced 
immunosuppressors [200]. To promote their growth 
and proliferation, tumours also respond to endoplasmic 
reticulum stress (ER stress), which helps them evade 
the immune system recognition and response. ER stress 
also increases the production of pro-inflammatory fac-
tors in macrophages and modifies immune cell function 
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[204]. A study on oral squamous cell carcinoma (OSCC) 
revealed that macrophage polarisation toward the M2 
subtype is promoted by programmed death ligand 1 
(PD-L1) enriched exosomes derived from ER-stressed 
cancer cells. PD-L1 overexpression was linked to the 
poor overall survival of OSCC patients [205, 206]. PD-L1 
expression can also be enhanced in acidic TME [207]. 
Macrophages can also be switched to the M2 phenotype 
by high lactic acid and the hypoxic environment through 
the expression of arginase 1 (ARG1) [208].

Furthermore, myeloid-derived suppressor cell (MDSC) 
accumulation negatively affects antigen processing and 
presentation and produces immunosuppressive factors. 
This function of MDSCs is potentiated by TDEs [200]. 
In renal cancer, exosomal HSP70 enhances MDSC acti-
vation via activating TLR2 signalling [209]. Next, TGFβ 
and PGE2 in exosomes isolated from breast cancer help 
to accumulate MDSCs, thus enhancing tumour growth 
[210]. Exosomes derived from OSCC cells under hypoxic 
conditions enhanced the immunosuppressive function of 
MDSCs to interfere with the group of γδ T-cells via miR-
21/PTEN/PD-L1 signalling [211].

Pre‑metastatic niche formation, invasion, and metastasis
The formation of pre-metastatic niches, invasion, and 
metastasis are critical steps of cancer progression and are 
responsible for the widespread dissemination of cancer 
cells throughout the body. Exosomal proteins participate 
in various pro-metastatic mechanisms, including invasive 
behaviour promotion, induction of tumour neovascu-
larisation, disrupting vascular barrier, mediating specific 
organ colonisation, and setting pre-metastatic niches. 
Tumour-derived exosomes participate in permissive 
niche formation, supporting the “seed and soil” hypoth-
esis. This concept was introduced by Stephen Paget [212], 
who proposed that tumour cell (seed) growth requires 
the appropriate local microenvironment (soil). Although 
circulating tumour cells (CTCs) can be found in the vas-
culature of multiple organs, they do not necessarily give 
rise to metastasis. However, in advance of tumour cell 
dissemination, primary tumours can appropriate second-
ary sites, creating a pre-metastatic niche, which facili-
tates subsequent colonisation of this location by tumour 
cells [213, 214]. This is provided by the systemic signal-
ling of tumour cells, including exosome secretion [215].

The essential TDEs-carried molecules for ECM remod-
elling and epithelial-mesenchymal transition (EMT) are 
TGF-β, HIF1α, β-catenin, IL-6, caveolin-1, or vimentin 
[216]. Tumour-derived EGFR (epidermal growth factor 
receptor)-containing exosomes are capable of remod-
elling the liver microenvironment presenting a novel 
mechanism concerning liver-tropism of gastric cancer 
metastasis [79]. Hepatocellular carcinoma (HCC) and 

breast cancer are known to metastasise in bone, which 
causes fractures due to osteolytic bone destruction. To 
survive, metastasised cells interfere with normal bone 
remodelling through the suppression of bone formation 
and activation of bone resorption. This is enabled by 
osteoclast differentiation, which leads to the release of 
bone-derived factors that support tumour growth [217]. 
HCC-derived exosomes were highly enriched in Tumour 
necrosis factor-α (TNF-α), which promotes osteoclast 
differentiation. TNF-α also regulates hepatocyte pro-
liferation in liver cancer under uncontrolled inflamma-
tion [218]. To conclude, primary TDEs contribute to 
tumour metastasis by educating the primary and distant 
soil [219]. Moreover, exosomes also play a crucial role 
in the metastatic process by recruiting mesenchymal 
stem cells (MSCs) or regulating nutrient availability in 
the TME. MSCs associated with the tumour-like pheno-
type undergo morphological and structural changes due 
to TDE induction. The tumour-like phenotype includes 
atypical microvilli, pseudopods, higher vesicle secretion, 
and other changes, such as higher proliferation, invasive 
potential, and migration. Furthermore, proteins loaded 
in exosomes directly identify organs that are suitable for 
metastatic site formation [124]. Exosomal proteins not 
only promote tumour growth and metastasis but also 
serve as early markers of disease, as they are easily acces-
sible for clinical detection and highly secreted in cancer 
patients [37]. HSP70 was found to be expressed in the 
membranes of TDEs, in contrast to normal cells. Levels 
of HSP70-enriched exosomes are also increased in met-
astatic patients compared to non-metastatic patients or 
healthy individuals, thus, HSP70 may be used as a bio-
marker of cancer progression [220].

In breast cancer exosomes, fibronectin is involved in 
promoting metastasis via EMT and production of pro-
inflammatory cytokines and MMP-9 [221], metasta-
sis-associated protein 1 (MTA1) is linked to enhanced 
metastatic potential and unfavourable prognosis in 
breast cancer patients [222]. Exosomal TSP1 medi-
ates the disruption of endothelial cell integrity and the 
reduction of junction proteins VE-cadherin and ZO-1 
expression, thus, facilitating trans-endothelial migra-
tion of breast cancer cells [221, 223]. A study on mice 
with breast cancer revealed that exosomal nephronec-
tin (NPNT) regulates the ability of breast cancer cells to 
colonise lung [224]. Cell migration-inducing and hyalu-
ronan-binding protein (CEMIP) from brain metastatic 
cell-derived exosomes contributes to brain tumour 
invasion and association with brain vasculature, lead-
ing to enhanced tumour growth. In addition, CEMIP 
induces pro-inflammatory cytokines secretion, such 
as chemokines coded by CCL/CXCL genes or the TNF 
superfamily, thus promoting metastasis [225]. S100 
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calcium-binding protein A4 (S100A4) plays a pivotal 
role in tumour metastasis by regulating ECM remodel-
ling, cellular adhesion, and motility. S100A4 identified 
in highly metastatic HCC exosomes promotes metas-
tasis via the phosphorylation of STAT3 and upregula-
tion of osteopontin, a typical HCC promoter [226]. 
In pancreatic cancer cell-derived exosomes, proteins 
CXCR4 (C-X-C motif chemokine receptor 4) and 
MMP-9 were found to enhance the metastatic capabili-
ties of pancreatic cancer cells [227]. Similarly, enhanced 
secretion of exosomal MMP-1 promotes tumour cell 
invasion in gastrointestinal stromal tumours (GIST). 
The oncogenic protein tyrosine kinase (KIT)-con-
taining exosomes trigger the conversion of progeni-
tor smooth muscle cells to tumour-like phenotype and 
mediate the release of MMP-1 [228].

We have mentioned so far that cancer cells are able 
to take advantage of exosomal protein cargo by its 
uptake, however, they can also decrease intracellular 
levels of unwanted proteins or tumour-suppressors via 
exosome secretion. For example, metastatic duode-
nal carcinoma cells (AZ-P7a) do not tolerate intracel-
lular accumulation of polyadenylate-binding protein 1 
(PABP1). Consequently, PABP1 was found to be highly 
enriched in metastatic duodenal carcinoma (AZ-P7a) 
derived exosomes compared to normal cells (AZ-521) 
[229]. Furthermore, ST6Gal 1(beta-galactoside alpha-
2,6-sialyltransferase)-depleted colorectal cancer cells 
remove tumour-metastasis suppressor kangai 1 (KAI1, 
also known as CD82) via exosomes as a mechanism to 
enhance metastatic formation [124, 230]. Stimulator of 
interferon genes (STING), which serves as an adaptor 
protein in the innate immune response to DNA dam-
age or virus infection, can also be translocated into EVs 
through interaction with signal transducing adapter 
molecule (STAM). The translocation of STING into EVs 
served for STING degradation. EV-secreted STING 
downregulated the innate immune response [231].

Cancer treatment and therapy resistance
The effectiveness of cancer screening, as well as success-
ful early diagnosis and accurate risk assessment for can-
cer, are highly dependent on the specificity and quality 
of the biomarkers used. Many studies suggest that TDEs 
may be very promising cancer biomarkers. In recent 
years, exosomes were widely investigated in clinical trials 
(listed on ClinicalTrials.gov (https://​clini​caltr​ials.​gov/) 
with applications as biomarkers, drug-delivery systems, 
cancer vaccines, or exosome-based therapies. ClinicalTri-
als.gov includes 116 studies, of which 58 (50%) have been 
involved in studies of exosome biomarkers and 74.13% 
of those 58 trials were in relation to cancer. Another 
33 studies (28.44%) have been registered for exosome-
based therapy, most of them were focused on exosomes 
derived from MSCs. Overall, 6 studies (5.17%) have been 
registered for drug-delivery systems, and 2 clinical trials 
(1.72%) for exosome-based vaccines. The remaining 17 
trials (14.66%) have been focused on basic analysis [232]. 
Here we present clinical trials from ClinicalTrials.gov 
focussed on exosomal protein content as a potential bio-
marker in relation to cancer (Table 1).

Alterations in protein or nucleic acid content of 
exosomes in plasma strongly correlate with pathologi-
cal states of many diseases, including cancer even in 
early stages. Each millilitre of human blood contains 
over 109 exosomes; thus in vivo detection of exosomes is 
highly sensitive [37, 234, 235]. The summary of exosomal 
proteins with potential for clinical diagnostic applications 
of various types of cancer is listed in Table 2.

Another great potential of exosomes lies in their use 
as drug carriers. As mentioned before, exosomes pro-
tect their content with the lipid bilayer, and they can 
easily enter recipient cells. In addition, as exosomes 
are native to the organism, they do not cause any major 
side effects [265]. The ability of exosomes to serve as 
drug carriers was proven in many studies, for example, 
cisplatin-loaded exosomes extended the survival time 

Table 1  Clinical trials focused on exosomal proteins as cancer biomarkers

Gal-3 galectin-3, NCT National Clinical Trials, PD-L1 Programmed death-ligand 1, CD cluster of differentiation

Number Status Cancer type Exosomal content

NCT01840306 Completed HER2 + Breast Cancer Not specified

NCT05463107 Not yet recruiting Follicular Thyroid Cancer thyroglobulin, Gal-3, calprotectin A8/
A9, keratin 8/19, afamin, angiopoi-
etin-1

NCT02862470 Completed Anaplastic Thyroid Cancer thyroglobulin, Gal-3 [233]

NCT04529915 Active NSCLC Not specified

NCT05735704 Recruiting Haematological malignancies Not specified

NCT03581435 Unknown Gallbladder Carcinoma Protein profile

NCT03985696 Recruiting Non-Hodgkin B-cell Lymphomas CD-20, PD-L1

https://clinicaltrials.gov/
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of mice with ovarian cancer [266], macrophage-derived 
exosomes with paclitaxel inhibited Lewis lung can-
cer cells proliferation, and even possess better stabil-
ity of loaded paclitaxel than other loading approaches 
[267]. Adding more, since tumour cells frequently 
communicate via exosomes, TDEs may also deliver 
therapeutic drugs to other tumour cells. For instance, 
prostate cancer-derived exosomes loaded with pacli-
taxel can be uptaken by prostate cancer cells [268], 
similarly, exosomes from pancreatic cancer cells can 
deliver curcumin and induce cell apoptosis in pancre-
atic cancer cells [269]. Many preclinical studies on the 
role of exosomes as therapeutic drug carriers for can-
cer therapy have already been assessed, but more must 
be investigated [90]. Another promising therapeutic 
approach might be targeting cancer exosome release 
itself. Exosome secretion is mediated by an intracellu-
lar increase of calcium (Ca2+), which is regulated by the 
H+/Na+  and Na+/Ca2+  channels [270]. Blocking these 
channels with dimethyl amiloride (DMA), for example, 

reduced the amount of secreted exosomes in mice with 
colon carcinoma (CT26) [271].

Monoclonal antibodies (mAbs) are used in cancer 
immunotherapy to stimulate the function of the immune 
system and enhance the targeting of conventional anti-
cancer drugs. Upon binding to tumour-associated anti-
gens (TAAs), mAbs can disrupt crucial pathways that 
play a significant role in cancer cell activity. Nevertheless, 
TDEs carry several TAAs, therefore, they can decrease 
the efficacy of mAbs [272] as TAAs can bind antibod-
ies used against cancer cells, which results in insufficient 
amounts of antibodies that can reach cancer tissue. For 
example, exosomes secreted from cancer cells reduce the 
therapeutic activity of trastuzumab (HER2 blocker, nor-
mally activates Ab-dependent cell-mediated cytotoxicity) 
in breast cancer therapy [273]. On the other hand, TDEs 
can represent an attractive alternative source of TAAs 
for cell-free cancer vaccines for personalised tumour 
immunotherapy [274]. TDEs can transfer TAAs to anti-
gen-presenting dendritic cells (DCs). Some studies [275] 

Table 2  Exosomal proteins with potential for cancer diagnostics

Del-1 developmental endothelial locus-1, GPC-1 glypican-1, c-Met proto-oncogene mesenchymal-epithelial transition factor, GKN-1 gastrokine 1, L1CAM L1 cell 
adhesion molecule, also CD171, CAE carcinoembryonic antigen, LG3BP galectin-3-binding protein, PIGR polymeric immunoglobulin receptor, TACSTD2 tumor-
associated calcium signal transducer 2, AHSG alpha-2-HS-glycoprotein, CXCL7 C-X-C motif ligand 7, BATF2 Basic Leucine Zipper ATF-Like Transcription Factor 2
a Including: TMEM256 (transmembrane protein 256), ADIRF (adipogenesis regulatory factor), LAMTOR1 (late endosomal/lysosomal adaptor and mitogen-activated 
protein kinase 1), plastin-2, several Rab-class members (e.g. Rab-2A, Rab-3B, Rab-3D, Rab-7A, Rab-6A), VALT (V-type proton ATPase 16 kDa proteolipid subunit), 
STEAP4 (Six-transmembrane epithelial antigen of prostate 4), DJ-1 (protein deglycase/ Parkinson disease protein 7), S100-P, synaptotagmin-like protein 4, ADP-
ribosylation factor-like protein 8B, proton myo-inositol cotransporter, tetraspanin-6
b Including: NHP2 (H/ACA ribonucleoprotein complex subunit 2), OLFM4 (olfactomedin-4), TOP1 (DNA topoisomerase 1), SAMP (serum amyloid P-component), TAGL 
(transgelin), TRIM28 (tripartite motif-containing protein 28)

Protein marker Cancer type Fluid Diagnostic efficiency Reference

Panel of 17 exosomal proteinsa, TMEM256 Prostate cancer Urine Sensitivity 100%, specificity 60–100% 
(highest TMEM256)

 [236–238]

Del-1 Breast cancer Plasma Sensitivity 94.70%, specificity 86.36%  [239, 240]

CA125 Ovarian cancer Plasma Sensitivity 71%, specificity 98%  [241–244]

GPC-1 Pancreatic cancer Peripheral 
blood, Serum

Sensitivity 100%, specificity 100%  [244–247]

c-Met Pancreatic cancer Serum Sensitivity 70%, specificity 85%  [238, 248]

GKN-1 Gastric cancer Serum Sensitivity 91.2%, specificity 96.0%  [249, 250]

L1CAM Gastric cancer Serum Sensitivity 83.1%, specificity 62.2%  [251]

Panel of 6 exosomal proteinsb Colorectal cancer Tissue Sensitivity 70–100%, specificity 70–100%  [252]

CAE Colorectal cancer Serum Sensitivity 89.47%, specificity 95.88%  [253, 254]

LG3BP Hepatocellular carcinoma Serum Sensitivity 96.6%, specificity 71.8%  [238, 255, 256]

PIGR Hepatocellular carcinoma Serum Sensitivity 82.8%, specificity 71.8%  [238, 255, 256]

TACSTD2 Bladder cancer Urine Sensitivity 73.6%, specificity 76.5%  [238, 257]

CD151 Lung cancer Plasma Sensitivity 60%, specificity 75%  [37, 258]

CD91 Lung cancer Serum Sensitivity 60%, specificity 89%  [238, 259]

AHSG NSCLC Serum Sensitivity 54.9%, specificity 84.8%  [89]

CXCL7 OSCC Serum Sensitivity 60%, specificity 80%  [260]

BATF2 Nasopharyngeal carcinoma Serum Sensitivity 81%, specificity 82%  [261, 262]

PD-L1 Melanoma Plasma Sensitivity 80%, specificity 89.47%  [84]

Caveolin-1 Melanoma Plasma Sensitivity 69.0%, specificity 96.3%  [263]

EGFR VIII Glioblastoma Plasma Sensitivity 68%, specificity 100%  [137, 238, 264]
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showed that TDEs promote DC maturation and enhance 
antigen cross-presentation more potently than tumour 
cell lysates, which directly contributed to a more robust 
tumour-specific response of cytotoxic T-lymphocytes. 
Consequently, DCs treated by TDEs have the potential 
to effectively reverse immunosuppression in the TME. 
There have also been developed cell-free tumour vac-
cines containing α-fetoprotein-enriched DC-derived 
exosomes, which stimulate immune cells to produce 
IFN-γ and IL-2 and reduce the expression of TGFβ and 
IL-10 at the site of the tumour, thus, inducing antigen-
specific response to cancer cells. This led to tumour 
growth inhibition and metastatic ability limitation [276].

Moreover, exosomal PD-L1 might represent a  prom-
ising therapeutic target. It has been shown that meta-
static cancer cells produce a high level of exosomes, that 
carry PD-L1 on their surface. PD-L1 then binds the PD-1 
receptor on T-cells leading to the suppression of T-cell 
activity [84]. Blockade of PD-L1 can possibly bypass the 
current resistance to antibody therapies [277]. PD-L1 
and CTL-associated antigen 4 (CTLA-4) serve as check-
point receptors that are targeted for relieving exhaustion 
of CD8 T-cells caused by immunosuppression within the 
TME [278]. In addition, more possible targets may be 
relevant in this treatment strategy, namely T-cell immu-
noglobulin- and mucin-domain-containing molecule 
3 (Tim-3), and its ligand galectin-9 [279]. Addition-
ally, immune cell-derived exosomes can also participate 
in adoptive cell therapy (ACT), immunotherapy based 
on redelivering tumour-infiltrating lymphocytes (TILs) 
[280].

Concluding remarks
As we discussed, exosomes are involved in many critical 
steps of cancer progression, including ECM remodelling, 
angiogenesis, immune regulation, invasion, metastasis, 
and therapy resistance, and their content plays a pivotal 
role as a signalling hub in the tumour microenvironment. 
Exosomal cargo is protected from enzymatic degrada-
tion because it is encapsulated within the lipid bilayer of 
exosomes, allowing exosomal proteins to retain their native 
conformation and functionality. Specific proteins loaded to 
exosomes not only reflect the proteome of the cell of ori-
gin but also serve as markers of the pathological state of the 
cell. As the exosomal content varies depending on the cell 
of origin, exosomes may be used as specific biomarkers that 
can provide information about the genetic and molecular 
heterogeneity of tumours. Exosomes play a significant role 
in intercellular communication, and their content can pro-
vide valuable information for cancer diagnosis, prognosis, 
and treatment (clinical studies dealing with exosomal pro-
teins are listed in Table 1). Moreover, exosomal uptake by 
certain cells in the TME can be applied to cancer therapy, 

as exosomes can be loaded with various treatment drugs. 
The quantity of exosomes in the bloodstream or other body 
fluids may also indicate the stage and aggressiveness of 
cancer, as higher levels of exosomes may be associated with 
advanced disease. Alterations in tumour cell metabolism 
and decreased pH conditions within the TME promote 
TDE secretion.

Exosomes can serve as a source of “liquid biopsy” mate-
rial, which can replace or complement traditional tissue 
biopsies. This non-invasive approach is suitable for regu-
lar testing and monitoring and is particularly useful for 
patients for whom invasive procedures are not possible. 
Exosomes find primary clinical utility as biomarkers, cell-
free therapeutic agents, vehicles for drug delivery, and as a 
component in cancer vaccines. Ongoing research contin-
ues to uncover their specific roles and applications in dif-
ferent cancer types, bringing us closer to more effective 
and personalized approaches to managing cancer. While 
exosomes hold great promise, challenges include stand-
ardizing isolation and analysis techniques, as well as dis-
tinguishing between exosomes from cancer cells and those 
from non-malignant cells.
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