Detailed Information on Publication Record
2024
High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity
GOEL, Divya, Sushmita RAWAT and K. SREENADHBasic information
Original name
High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity
Authors
GOEL, Divya, Sushmita RAWAT (356 India, guarantor, belonging to the institution) and K. SREENADH
Edition
Journal of Geometric Analysis, Springer, 2024, 1050-6926
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.100 in 2022
Organization unit
Faculty of Science
UT WoS
001215445700001
Keywords in English
p-Laplacian; Hardy-Littlewood-Sobolev inequality; Pohožaev manifold; Radial solution; Kirchhoff equation
Tags
Tags
International impact, Reviewed
Změněno: 20/5/2024 14:20, Mgr. Marie Šípková, DiS.
Abstract
V originále
This article deals with the study of the following Kirchhoff-Choquard problem: \begin{equation*} \begin{array}{cc} \displaystyle M\left(\, \int\limits_{\mathbb{R}^N}|\nabla u|^p\right) (-Δ_p) u + V(x)|u|^{p-2}u = \left(\, \int\limits_{\mathbb{R}^N}\frac{F(u)(y)}{|x-y|^μ}\,dy \right) f(u), \;\;\text{in} \; \mathbb{R}^N, u > 0, \;\; \text{in} \; \mathbb{R}^N, \end{array} \end{equation*} where $M$ models Kirchhoff-type nonlinear term of the form $M(t) = a + bt^{θ-1}$, where $a, b > 0$ are given constants; $1<p<N$, $Δ_p = \text{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator; potential $V \in C^2(\mathbb{R}^N)$; $f$ is monotonic function with suitable growth conditions. We obtain the existence of a positive high energy solution for $θ\in \left[1, \frac{2N-μ}{N-p}\right) $ via the Pohožaev manifold and linking theorem. Apart from this, we also studied the radial symmetry of solutions of the associated limit problem.
Links
GA22-17403S, research and development project |
|