
Adversary Tactic Driven Scenario and Terrain Generation with
Partial Infrastructure Specification

Ádám Ruman
ruman@fi.muni.cz
Masaryk University
Brno, Czech Republic

Martin Drašar
drasar@ics.muni.cz
Masaryk University
Brno, Czech Republic

Lukáš Sadlek
sadlek@mail.muni.cz
Masaryk University
Brno, Czech Republic

Shanchieh Jay Yang
jay.yang@rit.edu

Rochester Institute of Technology
Rochester, NY, USA

Pavel Čeleda
celeda@fi.muni.cz
Masaryk University
Brno, Czech Republic

ABSTRACT
Diverse, accurate, and up-to-date training environments are essen-
tial for training cybersecurity experts and autonomous systems.
However, preparation of their content is time-consuming and re-
quires experts to provide detailed specifications. In this paper, we
explore the challenges of automated generation of the content (com-
posed of scenarios and terrains) for these environments.

We propose new models to represent the cybersecurity domain
and associated action spaces. These models are used to create sound
and complex training content based on partial specifications pro-
vided by users. We compare the results with a real-world complex
malware campaign to assess the realism of the synthesized content.
To further evaluate the correctness and variability of the results,
we utilize the kill-chain attack graph generation for the generated
training content to asses the internal correspondence of its key
components.

Our results demonstrate that the proposed approach can create
complex training content similar to advanced attack campaigns,
which passes evaluation for soundness and practicality. Our pro-
posed approach and its implementation significantly contribute
to the state of the art, enabling novel approaches to cybersecurity
training and autonomous system development.

CCS CONCEPTS
• Security and privacy → Systems security; Formal security
models; • Computing methodologies→ Modeling and simula-
tion.

KEYWORDS
cybersecurity model, adversary framework, attack scenario genera-
tion, cyber terrain generation
ACM Reference Format:
Ádám Ruman, Martin Drašar, Lukáš Sadlek, Shanchieh Jay Yang, and Pavel
Čeleda. 2024. Adversary Tactic Driven Scenario and Terrain Generation
with Partial Infrastructure Specification. In The 19th International Conference

ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 19th International
Conference on Availability, Reliability and Security (ARES 2024), July 30-August 2, 2024,
Vienna, Austria, https://doi.org/10.1145/3664476.3664523.

on Availability, Reliability and Security (ARES 2024), July 30-August 2, 2024,
Vienna, Austria. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3664476.3664523

1 INTRODUCTION
Training environments are prominent in human experts’ education
and autonomous systems training. Regardless of the use case, these
environments need to be diverse, correct, and up-to-date with the
current developments of the targeted domain. Preparing training
content for such environments is highly demanding in cybersecu-
rity, requiring detailed knowledge of the latest cybersecurity and
system administration practices. The content blueprints also need
thorough testing to eliminate unintended but successful decision
sequences, which hinder the training’s efficacy. Thus, cybersecurity
training content can be perceived to be composed of two tightly
connected concepts: the scenario – describing all executable de-
cision sequences, and the terrain – the technical infrastructure
description allowing and limiting the execution of decisions as
dictated by the scenario.

To alleviate the difficulties in creating training environment con-
tent – stemming from the lack of experts and their time – past
cyber exercises and malware campaigns can be used as templates
to acquire training content. However, there are two primary chal-
lenges in fully utilizing the data they can provide. First, their limited
quantity, diversity, and coherence restrict the number and variance
of the training. Second, the absence of a standardized data format
across the sources entails significant transformational efforts for
specific applications.

One avenue involves the artificial generation of adversarial deci-
sion sequences to address the limitations of utilizing past exercises
and campaigns. It has the potential to deliver a substantial volume
of diverse and coherent data shaped by the variations in input
specifications in a guaranteed – unified format.

The primary objective of this paper is to design a mechanism for
the automated generation of training content – of terrains and sce-
narios. The generation should be parameter driven: requirements
for the training’s properties and goals – shaping the scenario, and
hints limiting or specifying the technical layout of the terrain.

To accomplish its objective, this work presents multiple contri-
butions. First, it introduces a novel action framework ensuring the
verifiable logical coherence of the scenarios. Second, it devises an

https://orcid.org/0000-0002-3931-9970
https://orcid.org/0000-0002-9623-1756
https://orcid.org/0000-0003-2577-6633
https://orcid.org/0009-0004-5503-2082
https://orcid.org/0000-0002-3338-2856
https://doi.org/10.1145/3664476.3664523
https://doi.org/10.1145/3664476.3664523
https://doi.org/10.1145/3664476.3664523

ARES 2024, July 30-August 2, 2024, Vienna, Austria Ádám Ruman et al.

infrastructure model facilitating the generation of terrains. Addi-
tionally, it proposes a distinctive generative algorithm that diverges
from prevailing approaches by concurrently generating terrains
and scenarios. This last contribution encompasses implementation,
accompanied by evaluations of its outputs. We first assess the real-
ism of produced results through manual comparison of generated
scenarios and terrains with an example of an advanced persistent
threat campaign. Then we utilize kill-chain attack graph genera-
tion to automatically create attack graphs for generated terrains
and compare them with the respective scenarios to assess correct
correspondence in generated scenario-terrain pairs.

The paper is structured as follows. Section 2 describes related
work from cybersecurity infrastructure modeling, cyber threat sce-
nario modeling, and their joint modeling. Section 3 introduces a
novel domain model and an actor framework. In Section 4, we pro-
pose an algorithm for the synthesis of terrains and scenarios and
introduce PAGAN – a prototype implementation. In Section 5, we
evaluate the generated terrains and scenarios for mutual correspon-
dence and realism. In Section 6, we conclude the paper.

2 RELATEDWORK
To our best knowledge, parallel generation of cybersecurity terrains
with non-trivial branching scenarios does not exist as a prior art.
Nevertheless, our proposed approach draws upon insights from
several research areas: attackers’ behavior modeling, topology mod-
eling, and attack plan and threat scenario generation. In the fol-
lowing text, we present notable representatives from each area and
discuss them primarily concerning scenario generation.

Some taxonomies and frameworks have been proposed for attack-
ers’ behaviormodeling, often tailored for specific research problems,
such as the Action-Intent Framework [21]. However, only several
frameworks can be considered widely recognized and developed.
The most prominent are Lockheed Martin’s Killchain [13], and the
Unified Killchain [24], which are attack-phase based, and MITRE
ATT&CK [6] with its tactics, techniques, and procedures (TTP),
which is matrix based.

For the modeling of topology and infrastructure settings, there
exist generic models not tied to a specific software tool, such as the
Cyber Terrain [25] or the MITRE D3FEND’s Digital Artifact Ontol-
ogy [5]; the models internal to specific simulation software, such
as NS3 [26] or others analyzed in [8]; and custom models employed
by threat scenario generation approaches mentioned later in this
section.

Attack plan and threat scenario generation approaches can be
divided into two groups: synthetic, which produces attack plans
without apriori knowledge of the terrain, and analytic, which cre-
ates the attack plans from the given terrain.

The synthetic group generally depends on extending the attack-
ers’ behavior models so that some relations between actions can be
derived and used to construct plausible attack plans. An example is
the tool [32], which enriches the MITRE ATT&CK framework with
so-called “promises”, and therefore can plan linear attack paths.

The analytic group relies on adjustments of the models as well
but also requires fixed information about the security posture of

targets, such as network topology, and the presence of vulnerabili-
ties, e.g., [3]. Due to its utilization in cybersecurity analysis, this
group is more voluminous than the synthetic group.

One of the prevalent methodologies for the analytic group is to
employ attack graph generation [16], which attempts to predict pos-
sible paths of breaching the infrastructure. Examples of such tools
relying on topology descriptions and vulnerability information are
FireMon Security Manager [10],MulVAL [22] or [31]. Others, such as
Cauldron [14], also accept rules for chaining attack steps together.
Therefore, meta-languages have been developed to describe the
inputs to these algorithms, such as [15]. The KCAG [30] combines
the MITRE ATT&CK and the Killchain frameworks and tweaks
the output of the MulVAL tool to create attack graphs that obey
the rules of killchains. An example of a more “exotic” approach is
shown in [17], which uses symbolic simulations to construct threat
scenarios.

Another option for threat scenario exploration is to base it on
data originally intended for reactive defenses. Endpoint Detection
and Response (EDR) tools detect ATT&CK techniques and can con-
struct their sequences (for example, Kaspersky’s commercial EDR
constructs activity trees [1]). Meanwhile, [4] uses intrusion detec-
tion alerts to construct attack graphs. The tool presented in [20]
uses kernel audit logs to construct provenance graphs, demonstrat-
ing that their results are equal to graphs extracted from cyber threat
intelligence data. To combine the two previous mentions, [12] im-
proves the results of EDRs by filtering false positive detection alerts
using tactical provenance graphs with causal dependencies between
alerts.

2.1 Limitations of Existing Approaches
The limitations of the approaches mentioned above are not short-
comings but rather arise from the difference in their objectives
compared to our use case. The most notable differences are gener-
ally:

Linearity vs. forkings – The majority of existing attack plan
generators create linear paths of actions.While this may be themost
interesting aspect, some applications can benefit from considering
all the different ways to reach a goal (e.g., training autonomous
systems).

Success-only approach –Threat scenario generators are frequently
goal-driven, occasionally so much that they discard entirely states
that do not lead to it. In specific applications, the information about
reachable states diverging from intended trajectories may be of
equal value.

Attack path optimality –Attackers do not always take the optimal
path to reach their objective(s). This might be due to circumstances
such as preferring stealthiness, the need to use decoy actions to
confuse defenders, or simply due to available skill and resources.
We have identified a bias in existing tools to prefer optimal paths.

3 SCENARIO AND TERRAIN MODELING
In the preceding section, we emphasized generating non-trivial
branching scenarios and terrains. Such scenarios are relatively
uncommon in the cybersecurity landscape, typically represented
by attacks at the behest of state actors. However, they are the most
damaging and sophisticated, representing a superset of the more

Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification ARES 2024, July 30-August 2, 2024, Vienna, Austria

common attacks. Consequently, we utilize these complex scenarios
as a template for our models. Our models are constructed to enable
the expression of these complex scenarios, and the need for this
expressivity is influencing our design.

In this paper, we use the Nitro Advanced Persistent Threat
(APT) [23] to illustrate a non-trivial attack to explain our choices.
The Nitro APT is a lesser-known campaign endeavoring to exfiltrate
industrial secrets and intellectual property. It employs techniques
to gain a foothold in the target infrastructure, establish command
and control points, escalate privileges, and move laterally. These
techniques can be arbitrarily chained depending on the target in-
frastructure and the response of its users.

An attempt to construct a multitude of Nitro-like scenarios in
different terrains and contexts reveals the main issue, which is
discarded by the tools mentioned in the previous section – that the
terrain and scenario have to be generated concurrently, to produce
correct and realistic outputs. Therefore, it is impossible to begin by
generating the terrain and fixing it because this would not guarantee
that any scenario can be executed within. The other direction also
has its issues, namely that there is an infinite number of terrain
configurations satisfying a scenario. This is further elaborated in
Section 4.

To address this concurrency issue, we construct our model to
enable expressing both the scenario and the terrain in detail and to
enable an easy interplay between the two1.

3.1 Scenario Models
We classify attack posture, adversarial actions, and their connection
tomodel a scenario. These classifications were distilled by analyzing
adversary techniques and focusing on their requirements. While
they may appear arbitrary at first glance, this classification supports
the terrain model, which will be described in greater detail later in
the text.

3.1.1 Attack posture: We created the Adversary Control State
(ACS) to express the attack posture. This is a collection consisting
of three types of “artifacts”, as described in Table 1, which the
adversary acquires throughout the scenario execution.

Table 1: Artifacts of the ACS.

Artifacts Description

Tokens Express accesses to sub-networks and devices, the
existence of sessions, or infected files/drives/emails.

Credentials For authenticating into systems and services.

Capabilities Express fine-grained permissions for using a given
system.

While tokens and credentials are self-explanatory, further elabo-
ration on the capability artifact type is required. Its values were
derived from Microsoft’s access control mechanisms in its oper-
ating systems and filtered by analyzing prerequisites for MITRE
ATT&CK techniques. We present the enumeration of its values in
Table 2. In addition to values in the table, capabilities belong to
1The particular order of model components in this section does not suggest the chrono-
logical order of their generation.

one of the four strength classes: service, user, administrator, and
system.

Table 2: Capabilities used in our model.

Family Capability

Config Local User, Config Local Machine,System Operations Shutdown, Control Domain, CodeExecution
Debug Processes, Load Drivers,Security Create Security Tokens (ST), Impersonate ST
Persist Logout, Impersonate, Domain Login,Account Properties UAC Elevate, Access Network as Domain

Account Manipulation Add User, Delete User, Edit User
FileSystem Access Generic, Elevated, Shared
FileSystem Operations Read, Write
Utility Persistence

3.1.2 Adversarial actions: Scenario generation is heavily adversary-
driven; thus, the most critical set of available actions is that of the
hypothetical attacker. When generating a scenario, mimicking an
attacker’s decision process is necessary. Therefore, the framework
should contain information that encodes when a technique is ap-
plicable and what paths it opens.

Existing adversary frameworks such as the Cyber Kill Chain [13]
and its unified version [24] aim to map their techniques to a se-
quence, which is overly strict and deviates from how attackers
operate.

MITRE ATT&CK® [6] contains only minimal information about
when a technique can be applied (formulated vaguely such as: “you
need an administrator account to do this”). On the other hand, it
is the most complete framework, so it is sensible to use it as our
baseline when enumerating techniques.

None of the existing frameworks fully fit our needs, so the ques-
tion is: can we mend or enrich MITRE ATT&CK® to contain granular
enough information to base decision-making upon it? If yes, how do
we encode this information?

Wehave already introduced theACS, whichwe can use to encode
the needed information. The idea is to enrich the techniques so that
they express:

• their requirements on the actual ACS for their application,
• existence requirements for enablers (vulnerabilities, mis-
configurations, etc.),

• rules governing the changes in the ACS after their applica-
tion.

The resulting structure of a technique’s usage is described in List-
ing 1.

Listing 1: Encoding of technique enriching information.
1 struct UsageScheme {

2 /*** ACS requirements ***/

3 given: Vec<Token>,

4 required_capabilities: dyn Predicate<CapabilityTemplate>

5 required_enabler: Option<EnablerTemplate>,

6 // special rules for when not to use the action

7 except_if: dyn Predicate<Token>,

8 /*** ACS additions ***/

9 grant: Vec<Token>,

ARES 2024, July 30-August 2, 2024, Vienna, Austria Ádám Ruman et al.

10 provided_capabilities: Vec<Capability>,

11 // what specifies the inherited privilege level

12 privilege_origin: PrivilegeOrigin,

13 //What limits the set of inherited capabilities

14 capability_specifier: CapabilitySpecifier,

15 // same service? other services? any?

16 credential_target: CredentialTarget,

17 // os creds? app creds?, MFA?

18 credential_type: CredentialType

19 }

20 impl Predicate for
21 All, Any, Not, NoneOf, NotJust, Empty {}

To create our framework, we augmented ATT&CK®. In this
process, some of the original techniques had to be split (e.g., the
lateral movement action Taint Shared Content was divided into
two techniques, one for creating the tainted content, the other
for opening it); others, we merged if their enriching usages were
equivalent.

The resulting framework, called Quiver , contains 53 actions,
each with one or more transformation options. The actions are not
constrained by any sequential ordering, and their associations are
easily derived from their relation to the ACS.

3.1.3 Connecting ACS and Quiver: TheACS can be regarded as a
state, and the Quiver framework as a set of transformations of that
state. Then, a finite-state automaton as a structure for scenarios
naturally offers itself. Figure 1 presents a graphical representation
of the scenario structure.

s0
root

s2

s4

s1

s3
accepting

t0

t6 t4

t1

t2
t3

Transition
Quiver action

Required software and
enabler options

Applied credential(s)

State
ACS

Actively controlled
device

s5

t5

Figure 1: Scenario automaton structure.

3.2 Terrain Models
With the scenario modeled as a combination of ACS and Quiver,
we need to model the terrain to accommodate and organize the
elements of the scenario models. The two key questions driving the
design of the model are then:What details do we need to represent
with it? andHow to encapsulate the nuances required by the scenario?

At the highest level, the terrain is represented as a set of intercon-
nected (networked) devices. Its details are derived from the breach
mitigation steps provided by the MITRE DEFEND™ [7] and guide-
lines and descriptions of common security-related processes (such
as authentication, access control and authorization, user isolation,
etc.) in the Microsoft documentation [19]. Due to the complexity

of the model, we describe it as a class diagram in Figure 2 and
elaborate on some of the more interesting minutiae (mostly the
intertwining with the scenario) in the following text.

The tokens of the ACS are exclusive to the attacker and not part
of the terrain. On the other hand, capabilities are organized and
encapsulated by accounts and, transitively, devices. Credentials are
pretty standalone structures of the terrain model, as they represent
a piece of knowledge. In the terrain, they provide access to ser-
vices (in the scenario, this translates to allowing exploits requiring
authorization) and accounts (translating to obtaining new capa-
bilities). Other components of the scenario present in the terrain
are software and enablers. Software is deployed on devices as an
executable or a process under a specific privilege level. Enablers
are also deployed on a per-device basis.

3.3 Model Element Instantiation and Relations
Some of the elements of the designed models must mirror their real-
world counterparts (software and enablers). Collecting the assets
themselves is straightforward (although the trustworthiness and
completeness of the data are sometimes questionable), as there are
existing databases provided by NIST. On the other hand, we rely
on relations between them, such as which vulnerability facilitates
the use of a given adversary action, which software (setup) allows
applying a given technique, etc. These relations are more cumber-
some to muster. Some connections can be obtained from the same
databases as the assets; others have to be derived from unstructured
sources (such as analysis reports of system compromises or OSINT).
Momentarily, we are working with a small set of manually gathered
relations that fairs well in the trial period but will have scalability
issues when we move on to large-scale use of our proposed tool.
Thus, we started exploring the usage of Large Language Models
(LLM) for gathering and enhancing relationships in an automated
manner.

4 SCENARIO AND TERRAIN GENERATION
ALGORITHM

With the model defined, we introduce the computations, which
result in a scenario and a corresponding terrain that enables the
execution of the former. The two processes are tightly tied to each
other. In general:

• Scenario generation is based on state-exploration. Given a
starting state, it discovers all other states of the ACS that are
reachable under the action space of the attacker, as described
by the Quiver framework.

• The terrain generation is multifaceted, as it imposes restric-
tions on the reachable states of the scenario. However, it
must also obey its results and shape the terrain to map the
scenario precisely.

Their dependencies significantly influence the scheduling of sce-
nario and terrain generation. We have investigated the following
options:

• Scenario generation followed by terrain creation – This
approach proved infeasible due to the arbitrary nature of

Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification ARES 2024, July 30-August 2, 2024, Vienna, Austria

User

Terrain

<<entity>>

Device

<<entity>>

 - IDs
 - hardware properties
 - virtualization
 - role

Executable

<<entity>>
 - name & version
 - access
 - impact
 - manifest properties

UserAccount

<<entity>>

Credential

<<entity>>

 - type
 - security metadata

Data

<<entity>>

 - access specifiers

Enabler

<<interface>>

 - locality
 - impact

Process

<<entity>>

 - integrity level
 - held ports

Operating System

<<ruleset>>

 - user access control
 - process isolation
 - memory isolation
 - compulsory software
 - prohibited software
 - domain and policy
 settings

Capability

<<entity>>
 - type
 - level

Network Engine

<<ruleset>>

- device accessibility
- firewall rules with
 per-protocol granularity

Owns

0..n

0.. n

Owns

0..n

0.. n

Applies to

0..n

0..n

Applies to

0..n

0..n

Has

1

0..n
Applies to

0..n 1..n

Owns
1

0..n

Is stored on

0..n

1

Made of1

1

<<extends>>

Contains
1

1..n

Contains

1

1..n

Made of
11..n

Governed by

1..n

1
Made vulnerable by

1..n
0..n

Made vulnerable by

1..n

0..n

Figure 2: Terrain model as a UML class diagram.

the generated scenarios. We would need to explore all hy-
pothetical states an attacker can reach in any hypotheti-
cal infrastructure (the number of technique combinations
grows exponentially with the allowed length of the paths).
Therefore, we need to cut back generation based on depth
or breadth, which is very ineffective. And even then, we
lack assurance that the terrainmapped onto the scenario will
make practical sense.

• Terrain generation followed by scenario creation – Con-
trary to the previous approach, we try to generate a meaning-
ful terrain that imposes heavy restrictions on the reachable
states of the scenario. Because we already have tools that can
generate attack plans for fixed terrains, this approach effec-
tively reduces our problem to that of generating the terrain.
However, guaranteeing the possibility of a meaningful and
logically sound scenario is not trivial.

• Interspersing the two – From the shortcomings of the
previous approaches, we can observe that scenario genera-
tion needs limitations from the terrain, but at the same time,
the terrain has to permit alterations to accommodate the
scenario. This can be achieved by dividing the two genera-
tion processes into smaller units and scheduling them in an
alternating manner.

Load and
process input
parameters

Create the
terrain

skeleton

Generate a
scenario

Finalize
terrain and

scenario

Serialize
outputs

End

Figure 3: High-level algorithm flowchart.

We have chosen to pursue the last option. Figure 3 depicts the high-
level flow of the algorithm. The interweaving of work units at this
abstraction level is quite simple, as we divide the terrain generation
into two parts and separate them by the scenario generation. In the
following subsections, we detail these high-level work units.

4.1 Input Parameters
Although it is desirable to maximize diversity in the generated ter-
rains and scenarios, this must be balanced with realism and mean-
ingfulness. To achieve this, we have opted for a parameter-driven
approach to generation. The abstraction level of the parametriza-
tion determines the partial infrastructure specification required
for generation. The following three aspects of parametrization have
been chosen:

Users – A set of personas specifying the people using and main-
taining the infrastructure. Crucial information about them is their
roles within the infrastructure (e.g., common user, specialized ad-
ministrator), and their IT proficiency, among others. Later, we use
these metrics to synthesize user accounts and give them authoriza-
tions. They also help with personalizing the scenario (for example,
if an adversary action requires some software, and we have mul-
tiple choices, we can prioritize based on the person’s role in the
company).

Adversary – The parametrization includes the objective to be
achieved, represented as an action within the Quiver framework,
along with the type of device to be targeted (e.g., domain controller,
database, desktop, etc.). Additionally, it encompasses any additional
side effects (e.g., leaving a backdoor on a device), the number of
devices to be utilized throughout the attack, and the amount of
computing power available for online and offline password crack-
ing.

Infrastructure – The most complex aspect of the three specifies
the presence or absence of specialized network segments (domain

ARES 2024, July 30-August 2, 2024, Vienna, Austria Ádám Ruman et al.

control, demilitarized zone, operational technologies, etc.) and de-
vices in them. Also, whether the infrastructure is domain-controlled
and some aspects of segment isolation. For the full specifications
of parametrization, please refer to the source code [28].

4.2 Terrain Skeleton Synthesis
With the input parameters provided by the user, the system focuses
on creating a terrain skeleton to limit the scenario state space. The
terrain skeleton is based on a template (including communication
rules and access policies). This is because most real-world networks
– even if heavily diverse – conform to some best practices and con-
ventions. We mix this template with the provided input parameters
and a little randomness to generate i) network segments, ii) devices
with their roles, operating system, software that must or must not
be present, iii) reachability between devices (via network, shared
filesystem, removable media), iv) communication rules (firewall) be-
tween devices (with protocol granularity), v) user accounts, access
control rules, capabilities, and authorizations, and vi) credentials to
accounts and services, with their strength against cracking.

A challenging part of the terrain generation is account and cre-
dential synthesis due to their complexity and dependencies with
the scenario generation. Specific lessons learned we encountered
include:

• Without predefined accounts, the options to consider are
too numerous. Take, for example, an attacker who has one
shot at privilege escalation from a user account. Then, we
must consider all possible state transformations based on all
possible combinations of encapsulated capabilities, further
divided by the possible combinations of devices they are
applicable on and privilege levels. This would result in an
enormous explosion of state space.

• State explosion is also problematic when considering ad-
versary techniques that provide credentials. Let’s consider
system-level keylogging, for example, that can provide vir-
tually any password to any service, device, or account for
any person coming into contact with the infected device.
Considering that many options would be infeasible, thus
pre-generation is necessary.

4.3 Scenario Generation
We begin by generating all the sequences of devices that might
create a successful attack path (limited by attack path length from
the parameters). Then, we create or expand the scenario automaton
for each such sequence. We begin with theACS, where the attacker
resides in the untrusted internet (represented by a single device),
has access to their target infrastructure either as anyone on the
internet, or with special knowledge or access (such as knowing
some credentials, already having a backdoor). Then, from this state,
we query actions the adversary can take; we consider the minutiae
of these actions’ applications, such as deviations based on the ex-
ploited software, machine settings, the credentials used, etc. If we
reach an already explored state (with the same following device
sequence), we might terminate the computation at this point. This
way, we compute all the possible states the attacker can find them-
selves in after applying exactly one action. Then, we recursively
explore the newly created states in a depth-first-search manner,

stopping when the state conforms to the parametrized goal of the
attacker (an accepting state) or exceeds the allowed number of
steps.

Due to the scenario generation being a state-exploration algo-
rithm, we have to limit the state space further. For example, that is
why the Quiver framework merges MITRE ATT&CK TTPs where
possible. Another countermeasure we apply is the usage of wild-
card credentials in the ACS, which can replace multiple existing
credential combinations and is then later specialized at the point
of usage. This reduces the number of states required to model the
adversary’s possible states between acquiring and utilizing such
credentials.

4.4 Finalization
The automaton generated, as described in the previous section, is
still too extensive and contains too many attack sequences to be
considered realistic. Thus, we randomly choose some accepting
state(s) and some of the paths leading to them. Then, we tweak
the terrain to make these paths executable (we deploy the software
and settings from the transitions using heuristics when multiple
options are available), then freeze it. Afterward, we do a full graph
search and cut the transitions that only require artifacts not present
in the terrain.

4.5 Prototype Implementation
We have created a prototype implementation of the designed al-
gorithm, called PAGAN [28, 29], that is mostly true to the design.
The most notable deviations are:

• To ease the computation, PAGAN randomly chooses one
device sequence before scenario generation and considers
only that one, not all the possibilities.

• When faced with multiple options for account takeover (ei-
ther when choosing a credential to apply or the account that
should be running the exploited software), PAGAN eagerly
prioritizes the option with the highest immediate rewards.
For example, suppose it has to choose from two user-level
accounts, where one has slightly more power on the targeted
device. In that case, it will be prioritized over the other, even
if it is more potent on a different device that is compromised
in the future.

• PAGAN can only work with goal specifications on the final
device if they are defined by tokens (with capability-defined
specifications, this is possible). Also, we can only create
specifications that can be described solely with tokens or
capabilities, not simultaneously.

• PAGAN only uses privilege escalation techniques to get
higher-level capabilities and not to change accounts on the
same level.

5 EVALUATION
PAGAN is designed to guarantee the logical soundness of the gen-
erated scenarios and their executability in the terrains. We conduct
two experiments to evaluate PAGAN in this paper: one based on
real-world analyst reports and the other using a third-party attack
graph generation tool.

Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification ARES 2024, July 30-August 2, 2024, Vienna, Austria

5.1 Evaluation against Analyst’s Report
We use analyst’s incident report to re-create attack scenarios on a
real-world network infrastructure. We expect PAGAN to generate
scenarios that include what was reported.

5.1.1 Methodology. First, we manually transform the incident re-
port content into a ground-truth attack path, a terrain skeleton, a
set of software and enablers to be considered, and rules describing
the applicable relations between the triplets of software, enablers
and techniques. The above allows us to run the scenario generation
process (recall the third block in Figure 3) to obtain the plausible sce-
nario. Then, we manually compare and verify whether the reported
attack path exists in the scenario.

We consider a specific historical incident report on the Nitro
APT attack. Our choice fell on this particular case as it is sufficiently
– but not overly – complex (the manual transformation takes ∼8
hours of mostly mundane work). The terrain for this case consists of
two devices only: one (host A) reachable from the internet via email,
the other (host B) intranet-only. There are four user accounts, one
with administrator privileges on host A, another with administrator
privileges on both, and one user account for each device. We limit
the available software to those present in the report to minimize the
size of the scenario automatons. The attacker’s goal is to provide
the action Data Exfiltration on host B. For specialization, we have
multiple options: we can require a DATA token to enforce Data
Collection/Processing on the path; PERSISTENCE capability to
enforce Planting a Backdoor; or specify the filesystem-related
capabilities to be at least of administrator level. We go with the first
option. Figure 5a shows the manually derived ground truth attack
scenario based on the report.

5.1.2 Results. For this experiment, we tested the scenario with
and without the finalization process described in Section 4.4. The
scenario without the finalization contains 121 nodes and 761 edges,
with 24 accepting states and at least 96 hypothetical attack paths2.
The finalization process reduced the scenario to 77 nodes and 457
edges with a minimum of 48 successful attack paths (see the elec-
tronic attachments for the full result). We found that the ground-
truth attack scenario is present among the hypothetical attack
paths, thus confirming the ability of PAGAN to recreate complex
attack scenarios. The exact attack path is shown in Figure 5b.

One may wonder how to verify the validity of the remaining
alternative attack paths. The following section presents a thorough
experiment to compare PAGAN against a 3rd-party tool that gener-
ates attack paths.

5.2 Evaluation against 3rd-Party Tools
Despite its importance for evaluation, the previous method has two
shortcomings. First, because of the manual work included, it does
not scale well with the number of reports or the complexity of the
infrastructures in them. Second, it does not say anything about the
alternative paths in the scenario.

Therefore, another evaluation approach is required to eliminate
the need for manual work and consider all the attack paths encoded
in one scenario.
2Due to the mechanism of early return from already explored states, counting the
exact amount is complicated.

5.2.1 Methodology. For the second phase of evaluation, we gener-
ate a terrain and scenario with PAGAN, feed the terrain into the
third-party tool –KCAG, a state-of-the-art attack graph generator –
and compare its output with the PAGAN-scenario (see Figure 4). As
the outputs of both tools can be considered discrete graphs, graph
matching algorithms [18] – that consider both structure and labels
– can be used for the comparison.

PAGAN GED com-
putation

Transfor-
mation

KCAG
generator

Terrain

Scenario

KCAG

Scenario

Input
specifications GED

Figure 4: Workflow of graph edit distance computation be-
tween PAGAN and KCAG.

Due to the differing output and foundations of KCAG compared
to PAGAN, the outputs must undergo lossless transformations be-
fore entering comparison. Following the transformations, the two
outputs have equal structure but not equal labels. Consequently, we
cannot use the traditional strict equality over these labels. Instead,
we verify that the vertices and edges do not contradict each other
in the two graphs. This means that the global ACS encoded in the
scenario automaton’s vertices of PAGAN is a superset of the more
sparse “ACS” of the KCAG. Regarding edges, we verify that the
adversary actions from the different ontologies used map to each
other, including their enablers.

Having output graphs with a very similar structure and a well-
defined comparison operation for both vertex and edge labels, we
can apply graph edit distance (GED) [2] to express how much
the outputs differ. For this purpose, we utilize six edit operations
listed in Table 3. Any other change in the graph must be defined
as a sequence of these. The GED computation’s resulting value is
the global minimum of all the possible edit operation sequences
that transform one graph into the other, with the operation costs
presented in Table 3.

Table 3: Operation costs for graph edit distance, with substi-
tutions differentiated with sublabel granularity.

Operation Label Change CostDevice Action Software

Vertex Insertion & Deletion – – – 1
Edge Insertion & Deletion – – – 2
Vertex Substitution ✓ – – 1.5

Edge Substitution – ✓ ✗ / ✓ 3
– ✗ ✓ 1.5

Legend – ✓: changed, ✗: not changed, –: not considered by operation.

The costs are defined according to the relationships between
the operations. In general, operations over edges should be more
expensive than operations with vertices because attack techniques
are information that matters the most. At the same time, aspects
of application vary slightly in different threat models. Moreover,

ARES 2024, July 30-August 2, 2024, Vienna, Austria Ádám Ruman et al.

substituting vertices and edges should be cheaper than combining
deletion and insertion (substitutions affect the labels of vertices and
edges only, while deletion plus insertion also changes structural
likeness). To illustrate, consider a path of three vertices where the
middle one is mislabeled. In this case, applying a simple vertex
substitution and paying 1.5 is the straightforward solution. Now, if
we were to do that with deletion and insertion only, the recipe is:
remove the edge on the right, remove the edge on the left, remove
the vertex and add a new vertex, add the edge to the right, add the
edge to the left; for a total cost of 10.

KCAG attack graphs are typically shorter because they enumer-
ate only attack steps necessary to achieve attack goals, while the
scenario has paths representing other possibilities. Therefore, we
use the evaluation algorithm in Listing 2.

Listing 2: Evaluation algorithm.
1 fn eval(

2 KCAG: DirectedGraph,

3 PAGAN: DirectedGraph,

4) -> (f64, f64) {

5 kcag_paths = edge_disjoint_paths(KCAG);

6 geds = Vec::new();

7 for accepting_state in PAGAN {

8 component = subgraph(

9 PAGAN,

10 rule = "accepting_state␣reachable␣from␣node",

11);

12 component_geds = Vec::new();

13 for path_kcag in kcag_paths {

14 ged_min = GED(

15 path_kcag,

16 component,

17 rule = "all␣labels␣match",

18);

19 ged_max = GED(

20 path_kcag,

21 component,

22 rule = "no␣labels␣match",

23);

24 ged_kcag = GED(path_kcag, component);

25 ged_norm = (ged_kcag - ged_min) / (ged_max - ged_min);

26 component_geds.push(ged_norm);

27 }

28 geds.push(min(component_geds));

29 }

30 return (min(geds), max(geds));

31 }

The PAGAN component is a subgraph of nodes from which the
particular accepting state is reachable, together with the edges
between them. The ged_min represents the edit costs for the hy-
pothetical best-case scenario, that is, when we need only to do
structural changes (because we consider a path from KCAG but
a whole component from PAGAN, there are many of these), and
no label substitution at all. On the contrary, ged_max is for the hy-
pothetical worst-case scenario, where every label must be altered
on top of all the structural changes. Lastly, ged_kcag is the actual
GED between the two outputs. These three values are then used
to compute a normalized value for each PAGAN component and
KCAG-path combination. The minimum of these normalized values
is taken for each PAGAN component and then compiled into a range.

Since even unrelated pairs of PAGAN components and KCAG
paths can be created, the primary indicator of success is the lower

value within the range. Conversely, the higher value within the
range indicates the meaningfulness of the most diverging path of
the PAGAN scenario with respect to the KCAG.

To illustrate the comparison with an example, we again turn to
the Nitro APT scenario.When fedwith the terrain,KCAG generates
the attack path shown in Figure 5d. The computation then follows.

First, asset properties and levels of privileges are merged into a
single vertex for each attack step. For example, vertices 9, 10, and 11
are considered one vertex, with their merged data as a label. Nodes
representing countermeasures are ignored. Therefore, we obtain a
simple attack path where each second vertex is an attack technique.
The second step converts the attack techniques from vertices to
edges to resemble an attack path from a scenario. The final step
is to apply the computation from Listing 2, which determines the
combination of operations that provides the minimum distance. For
all accepting states from the scenario, at least one KCAG path with
normalized GED from 12% to 31% exists. The component containing
the path that most faithfully represents the manual attack sequence
in Figure 5a has 12% GED compared to one of the KCAG paths.
Figure 5c showcases the most diverging path from the component.

5.2.2 Setup. Because KCAG works with a different set of adver-
sary techniques, we had to limit PAGAN to employ only the inter-
secting techniques from Quiver. The intersection (with the help of
the MITRE ATT&CK framework, as it is mappable to both tools) is:
Active Scanning (T1595); Exploit Application (T1190); Phishing (T1566); Valid
Accounts (T1078); Remote Services (T1021); External Remote Service (T1133);
Create or Modify System Process (T1543); Abuse Elevation Control Mechanism
(T1548); Exploitation for Privilege Escalation (T1068); Brute Force (T1110);
Exploitation for Credential Access (T1212); Internal Spearphishing (T1534);
Data Manipulation (T1565); Network Denial of Service (T1498); Service Stop
(T1489).

These cover enough attack life-cycle phases to describe complex
scenarios. Also, we work with an artificial set of software artifacts
and enablers.

For the evaluation, we have generated ten scenarios. Table 4
provides a brief description of their attributes. Scenarios 1-5 are

Table 4: Attributes of the generated scenarios and terrains.

No. Nodes Edges Devices Accounts Min. Paths

1 102 630 13 47 N/A
2 1241 9558 13 48 N/A
3 1016 10373 13 48 396
4 7884 70401 13 48 2784
5 15890 157890 13 48 6378
6 103533 758588 11 49 59204
7 40736 346494 11 49 32627
8 16591 108521 11 49 14600
9 28462 319140 11 49 21527
10 36661 352718 11 49 16196

Note: Scenarios 1 & 2 did not store the list of paths.

generated with one set of parameters and 6-10 with another. The
first scenario forcefully uses the shortest possible sequence of de-
vices, the others are choosing at random. At first sight, the device
and account numbers don’t change much, as these numbers are
heavily based on the parameters. More differences can be seen in
the network connections and firewall rules, but there is no way to
represent those quantitatively.

Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification ARES 2024, July 30-August 2, 2024, Vienna, Austria

c0 c1 c2 c3 c4 c5 c6 c7

Phishing
with

malware
Plant

backdoor
Discover
reachable

Dump
cached

credentials

Use
known

credentials
Plant

backdoor
Collect
data

Exfiltrate
data

(a) Manually created attack path under Quiver. The states contain the newly acquired Tokens (see the table).

0 1 106 3 4 44 45 48 38
T1566 T1547 T1592 T1555 T1078 T1547 T1005 TA0010

(b) Accepting path from the scenario equal to the manual analysis, with the IDs of the states, and with actions mapped to ATT&CK.

0 1 2 55 82 57 58 73
T1566 T1592 T1555 TA0010 T1005 T1078 TA0010

(c) Path from the PAGAN-component with the worst𝐺𝐸𝐷𝑁𝑂𝑅𝑀 .

1

2 3

Reconnaissance

4

5

6

Initial
Access

7 8

Privilege
Escalation

9

10

11

12

Lateral
Movement

13

14

15

Privilege
Escalation

16 17

Collection

18 19

Exfiltration

20

(d) Incomplete attack path excerpt from KCAG containing IDs of vertices and ATT&CK tactics. Green vertices represent levels of privileges,
blue vertices asset properties, brown vertex a countermeasure, black squares attack techniques, and purple color an attack goal.

ID Description ID Description ID Description ID Description

c0 External phishing mail —— host B 2 Mail address on website 12 T1021.004 – Remote Service (SSH)
c1 Session, All capabilities T1566 Phishing with malware 3 T1594 – Search websites 13 Can login to account
c2 Persistence Capability T1547 Plant backdoor for persistence 4 Attacker can send emails 14 Windows OS installed
c3 Access via network T1592 Discover devices and services 5 No sender reputation analysis 15 T1547 – Boot / Logon Autostart
c4 Credential T1555 Credential Access from LSASS 6 T1566.001 – Spearphishing 16 Breached authorization (hostB)
c5 Session, All capabilities T1078 Valid Accounts 7 Send a phishing email 17 T1005 – Data from local system
c6 Persistence Capability T1547 Plant backdoor for persistence 8 T1547 – Boot / Logon Autostart 18 File-copy authorization breach
c7 Data T1005 Data collection 9 Breached authorization (hostA) 19 TA0010 – Exfiltration
. . . Untrusted Internet TA0010 Data exfiltration 10 Network service on port 22 20 Violated confidentiality of files
- - - host A 1 External actor from internet 11 Devices in the same network

Figure 5: Artifacts for the Nitro APT attack used for the evaluation and its example-based explanation. The table contains
elaborations where appropriate.

5.2.3 Results. The results for the introduced scenarios are listed
in Table 5. Since graph edit distance computation is an NP-hard
problem [33], we were limited by its time complexity. Therefore, we
focus on comparing smaller parts of the scenario (components) with
edge-disjoint paths from KCAG only and not with all existing paths
in KCAG (see Listing 2). Due to this adjustment, only scenarios 1 –
3 are covered entirely by our evaluation, while the other scenarios
are only partially due to a higher count of accepting states (see
Table 5).

𝐺𝐸𝐷𝑛𝑜𝑟𝑚 values for the first three scenarios – where exhaus-
tive comparison could be accomplished – are less than 20%. The
remaining scenarios indicate a higher𝐺𝐸𝐷𝑛𝑜𝑟𝑚 range. Averages of
𝐺𝐸𝐷𝑛𝑜𝑟𝑚 are close to or below 25% for these scenarios, except for
scenarios 6 and 10. For these two scenarios, the suboptimal values
are caused by limitations of the selection algorithm described above,
which sometimes discards optimal paths. By manual inspection, we
can identify a PAGAN component and KCAG-path pair for scenario
no. 6 with a 𝐺𝐸𝐷𝑛𝑜𝑟𝑚 of ∼25%. Therefore, we postulate that sce-
narios 6 and 10 contain paths with 𝐺𝐸𝐷𝑛𝑜𝑟𝑚 similar to the other
scenarios.

While𝐺𝐸𝐷𝑛𝑜𝑟𝑚 around 20% may indicate significant differences
between PAGAN and KCAG, it shows near-total correspondence

between the two. This is because KCAG explicitly utilizes reconnais-
sance at the beginning of each attack path, while PAGAN implicitly
begins with the knowledge gained by this activity. This difference
equals an edge and a vertex insertion for each path, adding ∼15% to

Table 5: Normalized graph edit distances, coverage of accept-
ing states, and lengths of the shortest paths (PAGAN/KCAG).

No. GEDnorm
Average
𝐺𝐸𝐷𝑛𝑜𝑟𝑚

Accepting
State

Coverage

Shortest Path
Length

1 15 – 20% 16.2% 12 / 12 6 / 5 vertices
2 15 – 20% 15.2% 48 / 48 6 / 5 vertices
3 15 – 20% 17.6% 36 / 36 6 / 5 vertices
4 16 – 40% 28.1% 102 / 540 7 / 5 vertices
5 17 – 36% 23.6% 102 / 813 7 / 5 vertices
6 41 – 60% 48.4% 158 / 23842 8 / 5 vertices
7 20 – 30% 24.3% 111 / 8944 9 / 5 vertices
8 15 – 30% 22.3% 401 / 3865 6 / 5 vertices
9 17 – 35% 23.6% 103 / 5921 7 / 5 vertices
10 40 – 60% 46.1% 287 / 5589 8 / 5 vertices
Note: Due to the time complexity of GED, evaluation results are computed

only for a fraction of the accepting states.

ARES 2024, July 30-August 2, 2024, Vienna, Austria Ádám Ruman et al.

each𝐺𝐸𝐷𝑛𝑜𝑟𝑚 for a given shortest path length. The remaining per-
centages result from PAGAN allowing more technique permutation
on the paths and multiple impact tactics, thus adding edge/vertex
renaming to 𝐺𝐸𝐷 computation while achieving the same output.

The evaluation results thus confirm that the scenario generated
by PAGAN can materialize in the respective cyber terrain. Scripts
used for evaluation, detailed results, and other evaluation artifacts
are listed in the supplementary materials [27].

5.3 Constraints and Room for Improvements
The design proposed in this paper prioritizes completeness and
detailedness over efficiency. This manifests in the complexity of
the models presented in Section 3, the looseness of the limitations
by the terrain, and the high abstraction of input parameters. While
beneficial for scenario diversity and correctness, these choices ad-
versely affect efficiency and cost.

5.3.1 Time Complexity. To express quantitatively, the generation
process for scenarios 7 and 8 takes around 101, respectively 146
minutes for PAGAN. Some of this time complexity stems from the
tool’s implementation, which uses a rather primitive and sequential
state exploration. Thus, in the near future, we plan to assess and
experiment with parallel algorithms [9] to see howmuch of a speed-
up is achievable.

5.3.2 Memory Complexity. The more concerning limitation is that
of computational memory [11]. We have observed a few occasions
where we had to stop the computation early due to it already using
up ≈860 GB of RAM memory (of our 1 TB limit). We are currently
working on identifying whether this problem stems from an im-
plementation bug or purely the nature of the algorithm. We also
plan to experiment with reducing the memory footprint of the state
exploration.

5.4 Discussion
The evaluation demonstrates that we can create complex and non-
linear scenarios, including non-successful paths. It also shows that
the generation process can correctly produce the terrain where the
scenario can be realized. We want to argue that these achievements
are a product of the models we introduced, which are suited for the
parallel generation of terrains and scenarios. The other approaches,
which focus on either scenario or terrain generation, cannot produce
such results because of the inevitable state-space explosion. We
would also like to argue that while other approaches need not use
ACS, Quiver, or be based on MITRE frameworks, we expect the
interplay of scenario and terrain generation to be a necessary mode
of operation.

6 CONCLUSION
We have established a mechanism for the automated concurrent
generation of non-trivial attack scenarios together with instantiable
cyber terrain descriptions necessary for the reliable execution of
these scenarios. This generation requires only a partial specification
of key elements required from the user while filling in the blanks
in a logically sound manner.

The contributions of this work bring novelty from multiple per-
spectives. First, by introducing an innovative infrastructure model

enabling the generation of cyber terrains, second, by devising a
novel action framework to ensure the verifiable logical coherence
of the generation process. The presented approach diverges from
prevailing methods by concurrently creating terrains and scenarios,
thus overcoming pitfalls stemming from generating the scenario
and the terrain sequentially. Moreover, by introducing PAGAN – an
implementation of the framework – and conducting an extensive
evaluation of its outputs3.

Two sets of experiments were conducted to evaluate PAGAN and
our models. The outputs of PAGAN were compared to the terrain
and scenario described in a writeup of the Nitro APT campaign.
The similarity of these two confirmed the realism and relevance
of the scenarios and terrains generated by PAGAN. Subsequently,
a kill-chain attack graph generation process was employed to au-
tomatically derive attack graphs for the generated terrains, which
were then compared with the corresponding scenarios. This assess-
ment demonstrated the correctness of the generated scenario-terrain
pairs.

We have identified vital distinctions that emphasize the suit-
ability and necessity of our methodology for applications such as
cybersecurity exercise generation or training of autonomous cy-
bersecurity agents. Our approach accommodates non-linear paths
of action, recognizes the value of information beyond immediate
success, and acknowledges the variability in attacker behavior, in-
cluding the preference for suboptimal paths in specific contexts.

We discovered some technical limitations in the implementa-
tion of the proposed models related to computational complexity.
Therefore, we will focus on optimizations as the next avenue of
research.

In conclusion, this research represents a significant advancement
in the field, providing a robust framework for the automated gener-
ation of adversary activities and instantiable infrastructure descrip-
tions. Our methodology addresses critical limitations of existing
approaches and offers a valuable tool for a range of applications
in cybersecurity training, autonomous system development, and
threat analysis.

ACKNOWLEDGMENTS
This research was supported by the Strategic Support for the De-
velopment of Security Research in the Czech Republic 2019–2025
(IMPAKT 1) program granted by the Ministry of the Interior of
the Czech Republic under No. VJ02010020 – AI-Dojo: Multi-agent
Testbed for Research and Testing of AI-driven Cybersecurity Tech-
nologies.

3The prototype implementation can be found at [28], the work-in-progress implemen-
tation for production is at [29]. Evaluation artifacts are published in [27].

Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification ARES 2024, July 30-August 2, 2024, Vienna, Austria

REFERENCES
[1] AO Kaspersky Lab. 2023. Mapping EDR to ATT&CKs. https://www.kaspersky.

com/enterprise-security/mitre/edr-mapping Accessed on 23 Oct 2023.
[2] David B. Blumenthal and Johann Gamper. 2020. On the exact computation of

the graph edit distance. Pattern Recognition Letters 134 (2020), 46–57. https:
//doi.org/10.1016/j.patrec.2018.05.002 Applications of Graph-based Techniques
to Pattern Recognition.

[3] Ghanshyam S. Bopche and Babu M. Mehtre. 2014. Attack Graph Generation,
Visualization and Analysis: Issues and Challenges. In Security in Computing and
Communications, Jaime Lloret Mauri, Sabu M. Thampi, Danda B. Rawat, and
Di Jin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 379–390. https:
//doi.org/10.1007/978-3-662-44966-0_37

[4] Yu-Chin Cheng, Chien-Hung Chen, Chung-Chih Chiang, Jun-Wei Wang, and
Chi-Sung Laih. 2007. Generating Attack Scenarios with Causal Relationship. In
2007 IEEE International Conference on Granular Computing (GRC 2007). IEEE, New
York, NY, USA, 368–368. https://doi.org/10.1109/GrC.2007.117

[5] The MITRE Corporation. 2022. Digital Artifact Ontology. The MITRE Corpora-
tion. https://d3fend.mitre.org/dao/ Accessed on 7 Nov 2023.

[6] The MITRE Corporation. 2023. MITRE ATT&CK®. https://attack.mitre.org
[7] The MITRE Corporation. 2023. MITRE D3FEND™. https://d3fend.mitre.org
[8] Martin Drašar, Ádám Ruman, Pavel Čeleda, and Shanchieh Jay Yang. 2024.

The Road Towards Autonomous Cybersecurity Agents: Remedies for Simu-
lation Environments. In Computer Security. ESORICS 2023 International Work-
shops, Katsikas et al. (Ed.). Springer Nature Switzerland, Cham, 738–749. https:
//doi.org/10.1007/978-3-031-54129-2_43

[9] Jonathan Ezekiel and Gerald Lüttgen. 2008. Measuring and Evaluating Parallel
State-Space Exploration Algorithms. Electronic Notes in Theoretical Computer
Science 198, 1 (2008), 47–61. https://doi.org/10.1016/j.entcs.2007.10.020 Proceed-
ings of the 6th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC 2007).

[10] Firemon, LLC. 2023. Security Manager. https://www.firemon.com/products/
security-manager/ Accessed on 23 Feb 2024.

[11] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. 1995. State-space
caching revisited. Formal Methods in System Design 7, 3 (01 Nov 1995), 227–241.
https://doi.org/10.1007/BF01384077

[12] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical Provenance
Analysis for Endpoint Detection and Response Systems. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 1172–1189. https:
//doi.org/10.1109/SP40000.2020.00096

[13] Eric Hutchins, Michael Cloppert, and Rohan Amin. 2011. Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary Campaigns
and Intrusion Kill Chains. Leading Issues in Information Warfare & Security
Research 1 (01 2011). https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf

[14] Sushil Jajodia, Steven Noel, Pramod Kalapa, Massimiliano Albanese, and John
Williams. 2011. Cauldron mission-centric cyber situational awareness with
defense in depth. In 2011 - MILCOM 2011 Military Communications Conference.
IEEE, Baltimore, MD, USA, 1339–1344. https://doi.org/10.1109/MILCOM.2011.
6127490

[15] Pontus Johnson, Robert Lagerström, andMathias Ekstedt. 2018. AMeta Language
for Threat Modeling and Attack Simulations. In Proceedings of the 13th Interna-
tional Conference on Availability, Reliability and Security (Hamburg, Germany)
(ARES ’18). Association for Computing Machinery, New York, NY, USA, Article
38, 8 pages. https://doi.org/10.1145/3230833.3232799

[16] Kerem Kaynar. 2016. A taxonomy for attack graph generation and usage in
network security. Journal of Information Security and Applications 29 (2016),
27–56. https://doi.org/10.1016/j.jisa.2016.02.001

[17] Jong-Keun Lee, Min-Woo Lee, Jang-Se Lee, Sung-Do Chi, and Syng-Yup Ohn. 2005.
Automated Cyber-attack Scenario Generation Using the Symbolic Simulation.
In Artificial Intelligence and Simulation, Tag Gon Kim (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 380–389. https://doi.org/10.1007/978-3-540-
30583-5_41

[18] Lorenzo Livi and Antonello Rizzi. 2013. The graph matching problem. Pattern
Analysis and Applications 16 (08 2013). https://doi.org/10.1007/s10044-012-0284-8

[19] Microsoft. 2023. Technical Documentation. https://learn.microsoft.com/en-
us/docs/

[20] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and V.N. Venkatakrishnan.
2019. POIROT: Aligning Attack Behavior with Kernel Audit Records for Cyber
Threat Hunting. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 1795–1812. https://doi.org/10.
1145/3319535.3363217

[21] Stephen Moskal and Shanchieh Jay Yang. 2020. Cyberattack Action-Intent-
Framework for Mapping Intrusion Observables. https://doi.org/10.48550/arXiv.
2002.07838 arXiv:2002.07838 [cs.CR]

[22] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. 2005. MulVAL: A
Logic-based Network Security Analyzer. In USENIX security symposium, Vol. 8.

Baltimore, MD, USENIX Association, Baltimore, MD, 113–128. https://www.
usenix.org/legacy/event/sec05/tech/full_papers/ou/ou_html/

[23] Gavin O’Gorman and Eric Chien. 2011. The Nitro Attacks Stealing Secrets
from the Chemical Industry. https://paper.seebug.org/papers/APT/APT_
CyberCriminal_Campagin/2011/the_nitro_attacks.pdf

[24] Paul Pols. 2017. THE UNIFIED KILL CHAIN. https://www.unifiedkillchain.com
Accessed on 1 Nov 2023.

[25] David Raymond, Tom Cross, Gregory Conti, and Michael Nowatkowski. 2014.
Key terrain in cyberspace: Seeking the high ground. In 2014 6th International
Conference On Cyber Conflict (CyCon 2014). IEEE, Tallin, Estonia, 287–300. https:
//doi.org/10.1109/CYCON.2014.6916409

[26] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
Springer Berlin Heidelberg, Berlin, Heidelberg, 15–34. https://doi.org/10.1007/
978-3-642-12331-3_2

[27] Ádám Ruman, Martin Drašar, Lukáš Sadlek, Shanchieh Jay Yang, and Pavel
Čeleda. 2024. Supplementary Materials: Adversary Tactic Driven Scenario and
Terrain Generation with Partial Infrastructure Specification. Zenodo. https:
//doi.org/10.5281/zenodo.11183639

[28] Ádám Ruman et al. 2024. PAGAN prototype implementation. https://gitlab.ics.
muni.cz/cyst-public/pagan

[29] Ádám Ruman et al. 2024. PAGAN-RS. https://gitlab.ics.muni.cz/ai-dojo/pagan-rs
[30] Lukáš Sadlek, Pavel Čeleda, and Daniel Tovarňák. 2022. Identification of Attack

Paths Using Kill Chain and Attack Graphs. In NOMS 2022 - 2022 IEEE/IFIP Net-
work Operations and Management Symposium (Budapest, Hungary). IEEE Xplore
Digital Library, Budapest, Hungary, 1–6. https://doi.org/10.1109/NOMS54207.
2022.9789803

[31] Oleg Sheyner and Jeannette Wing. 2004. Tools for Generating and Analyzing
Attack Graphs. In Formal Methods for Components and Objects. Springer Berlin
Heidelberg, Berlin, Heidelberg, 344–371. https://doi.org/10.1007/978-3-540-
30101-1_17

[32] Geir Skjotskift, Fredrik Borg, Martin Eian, and Siri Bromander. 2021. Adversary
Emulation Planner. Mnemonic. https://github.com/mnemonic-no/aep Accessed
on 4 Dec 2023.

[33] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu
Zhou. 2009. Comparing stars: on approximating graph edit distance. Proceedings
of the VLDB Endowment 2, 1 (aug 2009), 25–36. https://doi.org/10.14778/1687627.
1687631

https://www.kaspersky.com/enterprise-security/mitre/edr-mapping
https://www.kaspersky.com/enterprise-security/mitre/edr-mapping
https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.1007/978-3-662-44966-0_37
https://doi.org/10.1007/978-3-662-44966-0_37
https://doi.org/10.1109/GrC.2007.117
https://d3fend.mitre.org/dao/
https://attack.mitre.org
https://d3fend.mitre.org
https://doi.org/10.1007/978-3-031-54129-2_43
https://doi.org/10.1007/978-3-031-54129-2_43
https://doi.org/10.1016/j.entcs.2007.10.020
https://www.firemon.com/products/security-manager/
https://www.firemon.com/products/security-manager/
https://doi.org/10.1007/BF01384077
https://doi.org/10.1109/SP40000.2020.00096
https://doi.org/10.1109/SP40000.2020.00096
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf
https://doi.org/10.1109/MILCOM.2011.6127490
https://doi.org/10.1109/MILCOM.2011.6127490
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1016/j.jisa.2016.02.001
https://doi.org/10.1007/978-3-540-30583-5_41
https://doi.org/10.1007/978-3-540-30583-5_41
https://doi.org/10.1007/s10044-012-0284-8
https://learn.microsoft.com/en-us/docs/
https://learn.microsoft.com/en-us/docs/
https://doi.org/10.1145/3319535.3363217
https://doi.org/10.1145/3319535.3363217
https://doi.org/10.48550/arXiv.2002.07838
https://doi.org/10.48550/arXiv.2002.07838
https://arxiv.org/abs/2002.07838
https://www.usenix.org/legacy/event/sec05/tech/full_papers/ou/ou_html/
https://www.usenix.org/legacy/event/sec05/tech/full_papers/ou/ou_html/
https://paper.seebug.org/papers/APT/APT_CyberCriminal_Campagin/2011/the_nitro_attacks.pdf
https://paper.seebug.org/papers/APT/APT_CyberCriminal_Campagin/2011/the_nitro_attacks.pdf
https://www.unifiedkillchain.com
https://doi.org/10.1109/CYCON.2014.6916409
https://doi.org/10.1109/CYCON.2014.6916409
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.5281/zenodo.11183639
https://doi.org/10.5281/zenodo.11183639
https://gitlab.ics.muni.cz/cyst-public/pagan
https://gitlab.ics.muni.cz/cyst-public/pagan
https://gitlab.ics.muni.cz/ai-dojo/pagan-rs
https://doi.org/10.1109/NOMS54207.2022.9789803
https://doi.org/10.1109/NOMS54207.2022.9789803
https://doi.org/10.1007/978-3-540-30101-1_17
https://doi.org/10.1007/978-3-540-30101-1_17
https://github.com/mnemonic-no/aep
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631

	Abstract
	1 Introduction
	2 Related Work
	2.1 Limitations of Existing Approaches

	3 Scenario and Terrain Modeling
	3.1 Scenario Models
	3.2 Terrain Models
	3.3 Model Element Instantiation and Relations

	4 Scenario and Terrain Generation Algorithm
	4.1 Input Parameters
	4.2 Terrain Skeleton Synthesis
	4.3 Scenario Generation
	4.4 Finalization
	4.5 Prototype Implementation

	5 Evaluation
	5.1 Evaluation against Analyst's Report
	5.2 Evaluation against 3rd-Party Tools
	5.3 Constraints and Room for Improvements
	5.4 Discussion

	6 Conclusion
	Acknowledgments
	References

