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Abstract
Motivation: Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the 
microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling 
cells’ metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic sol
utions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox.
Results: In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabo
lite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi- 
group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through 
network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is 
open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in 
the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms.
Availability and implementation: DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://work 
flow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.

1 Introduction
Stable isotope-resolved metabolomics (SIRM) has strongly 
contributed in recent years to advance our understanding of 
metabolic regulation in metabolism-related pathologies such 
as cancer (M�endez-Lucas et al. 2020), diabetes, or cardiovas
cular diseases (Balcells et al. 2019). Closely related to conven
tional metabolomics, SIRM uses an isotope-labeled substrate 
to track isotope-labeled metabolic substrates through down
stream pathways (Lorkiewicz et al. 2019) and often concerns 
targeted quantification of a subset of known compounds (Shi 
et al. 2020). Targeted SIRM, more sensitive to signals close 
to the detection threshold, is often used to examine the meta
bolic effects of a pathological state or of an induced biologi
cal change (Giacomoni et al. 2015, Jang et al. 2018).

In SIRM experiments, either cells (in vitro) or the organism 
(in vivo), are fed with a 13C (or other stable isotope) labeled 
substrate and quantification is typically achieved using liquid 
chromatography–mass spectrometry and more rarely, nuclear 

magnetic resonance or gas chromatography–mass spectrometry 
(Kr€amer et al. 2018). In terms of data, not only the total metab
olite abundances, but also the quantified incorporation of the 
13C isotope label, are acquired in SIRM experiments. This dual 
information allows to study differences both in terms of total 
metabolite abundances and of the integration speed of the la
beled carbons between conditions of interest, allowing to un
cover biomarkers and understand metabolic changes associated 
with a particular condition or in time. Indeed, differences in iso
tope enrichment, changes in the labeling patterns, or differences 
in the contribution of nutrients to a metabolite pool, provide 
crucial knowledge of the cell’s metabolic activity and state 
(Buescher et al. 2015, Bruntz et al. 2017).

An isotopologue is a unique variant of the metabolite with 
a specific number of stable isotopes and mass, function of the 
number of labeled carbon atoms. Distributions of stable iso
topes for a given metabolite, which defines labeling patterns, 
and commonly represented as mass distribution vectors 
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(MDVs), represent the fractional abundances of isotopo
logues for each mass-to-charge (m=z) ratio and normalized to 
the sum of all possible isotopologues. Thus, the labeling pat
tern of a metabolite with n carbon atoms is ðM0; . . . ;MnÞ

with Mi being the relative abundances of the corresponding 
isotopologues ranging from no labeled carbons to all labeled 
carbons, i.e. 13C. At the isotopic steady state MDVs become 
time-invariant and their values can be considered as proxy of 
metabolic fluxes and structure of the metabolic network. 
Time-course experiments during the isotopic nonsteady state 
provide information on changes in patterns of labeling, the 
directionality of reactions, and incorporation speed before 
reaching the steady state.

Data correction to ensure accurate quantification of isoto
pic patterns and to minimize potential biases such as natural 
isotope abundances and overlap of mass spectra, is per
formed using software tools such as e.g. IsoCor (Millard 
et al. 2019) or PolyMID (Jeong et al. 2021), and results in 
MDVs where the labeling pattern is attributable only to 
the tracer.

Downstream bioinformatics analyses take such corrected 
MDVs as input and aim to shed light on substrate contribu
tions, pathway’s activity up to SIRM-based metabolic flux 
analysis (Lorkiewicz et al. 2019). While metabolic fluxes can 
be calculated using dedicated mathematical models with stoi
chiometric constraints, such analyses are computationally in
tensive (Millard et al. 2020, Lugar and Sriram 2022); and the 
complexity of building and parameterizing the most plausible 
model based on kinetic equations should not be underesti
mated (Yuan et al. 2009, Millard et al. 2021). Alternatively, 
it is recognized by the scientific community that analysis of 
13C labeling patterns is sufficient to provide information on 
relative pathway activities (Buescher et al. 2015).

Most of the available bioinformatics pipelines are dedi
cated to the analysis of conventional metabolomic data, such 
as the popular MetaboAnalyst (Pang et al. 2021), though 
some tools for tracer data analysis have been proposed. 
Open-source tools specifically designed for tracer metabolo
mics differential analysis include isoplot and univariate 
scripts integrated in the Workflow4Metabolomics suite 
(Giacomoni et al. 2015, Guitton et al. 2017), DynaMet 
(Kiefer et al. 2015), and TraVis Pies (De Craemer et al. 
2022). Unfortunately, options available for statistical signifi
cance analysis in these tools are mainly parametric tests, 
which are inadequate for data where one cannot assume a 
Gaussian distribution and sample size is often small. Some 
even completely lack statistical support (DynaMet) or do not 
support correction for multiple testing (TraVis Pies). 
Proprietary software tools for isotope-labeled data analysis 
are also available such as PollyPhiTM (Agrawal et al. 2019).

Importantly, existing methods often do not account for the 
specificities of isotopologue-based analysis, e.g. time-course 
analysis for dynamic tracer experiments is not covered. Thus, 
there is a strong need in the community for a one-stop com
prehensive resource for targeted tracer metabolomics data 
analysis. To fill this gap, we have developed DIMet, a bioin
formatics tool for differential analysis of isotopically resolved 
metabolomics data.

DIMet is designed to perform differential and time-series 
analyses of corrected isotopic labeling data obtained from 
targeted experiments. It uses a rigorous statistical framework 
to identify metabolites that are differentially labeled between 
conditions. Notice that DIMet does not aim to perform flux 

analyses. The package can handle univariate, bi-variate and 
multivariate data, allowing for the analysis of individual 
metabolites or entire metabolic pathways. The workflow of 
DIMet includes several visualization tools and statistical 
analyses suitable for tracer data to determine the significance 
of abundance or labeling differences to obtain Differentially 
Abundant—or labelled—Metabolites (DAM). Finally, DIMet 
provides integration with transcriptomic data through the 
metabolograms (Hakimi et al. 2016) (see Fig. 1).

2 Pipeline description and implementation
2.1 DIMet workflow
The architecture of DIMet is shown in Supplementary Fig. S1 
and it accepts three types of data as input:

1) corrected isotopologues, that can be provided either as abso
lute values ðM0; :::;MnÞ or as proportions (isotopologue con
tributions) ci ¼

MiPn

j¼0
Mj 

provided for each Mi;  

2) total metabolite abundances defined as mi ¼
Pn

j¼0 Mj 
for each measured metabolite; 

3) fractional contributions defined for each measured 

metabolite as φi ¼

Pn

j¼0
ðcj � jÞ

n . 

These inputs are provided as tab-delimited files accompanied 
by a configuration file that specifies the analyses parameters. 
If additional data preprocessing is needed, such as computing 
total abundances or converting the input format to accom
modate DIMet requirements, an accompanying preprocessing 
tool TraceGroomer is also provided and linked from the 
main GitHub repository of DIMet.

A typical study starts with exploratory analyses of (i) the 
total metabolite abundances and (ii) the labeling speed. For 
the former, comparisons of mi values between samples from 
different conditions using barplots are proposed. For the 
latter,13C enrichment and isotopologue contribution plots 
are generated from ci vectors and φi values. These two out
puts should be interpreted jointly in order to gain the under
standing of the speed of the labeled substrate incorporation: 
an increase in fractional contribution is indicative of a rela
tively faster labeling speed, and intuitively, faster labeling 
means higher flux (Jang et al. 2018).

Such data exploration is followed by rigorous statistical 
analyses for which DIMet offers both univariate and multi
variate statistics. Statistical analysis can be performed for 
pairs of samples both for data from two different conditions 
as well as for all pairwise consecutive time-points tiþ1 versus 
ti from a time-course acquisition. Statistical significance of 
differential abundances can be computed using either para
metric or nonparametric tests (univariate statistics): t-test, 
Kruskal–Wallis, Mann–Whitney, Wilcoxon’s signed rank 
test, Wilcoxon’s rank sum test and permutation test are cur
rently offered (see the Supplementary Material). Resulting 
P-values can be adjusted for multiple comparisons using 
Benjamini–Hochberg (Benjamini and Hochberg 1995) or any 
other FDR method available in the statsmodels library 
(Seabold and Perktold 2010). Multi-group analysis allows to 
directly compare three or more conditions. DIMet imple
ments this by applying the Kruskal–Wallis test, a nonpara
metric alternative to ANOVA: indeed, the assumptions of 
data normality and homoscedasticity are seldom fulfilled in 
tracer metabolomics datasets, and the sample size is often 
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small. The bivariate analysis allows to compare the entire 
MDV profiles using the Spearman correlation test. A multi
variate analysis is also proposed by producing a Principal 
Components Analysis (PCA) graph, applicable to total me
tabolite abundances and fractional contributions.

2.2 Implementation
DIMet has been developed in Python 3.9.7 and 3.10. It is 
available both as a stand-alone package and a suite of Galaxy 
tools. The stand-alone version of DIMet can be downloaded 
as a PyPI or as a Conda package; alternatively, it can be used 
via Docker or Singularity containers. The stand-alone version 
has been tested in Ubuntu 22.04 and Mac OS Ventura 
13.5.1. A user-friendly Galaxy version is accessible at https:// 
usegalaxy.eu, and in the section Isotopic Studies at https:// 
workflow4metabolomics.usegalaxy.fr.

3 Use case: glioblastoma metabolic adaptation 
under hypoxia
3.1 Materials
We illustrate the use of DIMet on data acquired in our previ
ous work (Guyon et al. 2022) to study glioblastoma patient- 
derived stem-like cells (P3). Glioblastoma (GB) is a malignant 
brain tumor with a low survival rate despite heavy treatment. 

In Guyon et al. (2022), we were interested in explaining to 
what extent the central carbon metabolism is altered in tu
moral cells, by selectively deleting lactate dehydrogenases, 
thus blocking fermentation. Here we present how the corre
sponding SIRM data analyses can be performed in DIMet, 
both for comparisons between conditions and for time- 
course experiments.

1) First, the role of lactate dehydrogenases (LDHA, 
LDHB) was investigated using 13C6-glucose as substrate 
in P3 control and double LDHA/B KO cells under hyp
oxia. Both SIRM and transcriptome RNAseq datasets 
were obtained in triplicates at 48 h. 

2) Second, for the P3 wild type cell line a time-course ex
periment was performed. Cultures were fed with 13C6- 
glucose and the SIRM data was acquired at 0, 1, 2, 4, 6, 
and 24 h. 

In both cases generated data consisted of total abundances, 
fractional and isotopologues’ contributions.

3.2 Step-by-step analyses and results
Both datasets were processed by DIMet: dataset (1) for the 
comparison of control and LDHA/B conditions and dataset 
(2) to study the labeling speed using a time-series setup. 

Figure 1. (A) Comparison between LDHA/B KO and control samples at 48 h. Control and LDHA/B KO samples' legend is in the upper-left corner of panel 
A ('Samples'). The mþ0 is the unlabeled isotopologue. Isotopologue scale is represented in the 'Isotopologues' upper section of panel A. The total 
abundance is represented with comparative bars (a). Isotopologue contributions are shown as stacked bars, these and the differences in fractional 
contributions are interpreted jointly (b). Highlighted DAMs, AKG, and Glu, are shown within pathway specific metabolograms (c). The extracted sub- 
network shows DAMs as ovals, DEGs (Differentially Expressed Genes) as rectangles, and dotted arrows as hypothesized slow fluxes (d), see text. (B) 
Time-course analysis of P3 cells. The three types of measures are shown across time, by metabolite. The isotopologue contributions have the same color 
key as Isotopologues legend in 1.A. The DAMs, exhibiting a significant difference in at least one txþ1 versus tx comparison, are shown, alongside a 
partially reconstructed metabolic map (right). No transcriptome was available for this experiment. AKG, alpha-ketoglutarate; Succ, succinate; Glu, 
Glutamate; Gln, Glutamine; OA, Oxaloacetate; Mal, Malate; Asp, Aspartate.
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Jointly, this allowed an integrated overview of TCA (tricar
boxylic acids) cycle and amino acids, improving the biologi
cal interpretation of the role of lactate dehydrogenases in 
metabolic rewiring of glioblastoma. For the purpose of this 
use case, we highlight here the analyses steps available in 
DIMet and the results they can yield. All the presented analy
ses are fully reproducible following the steps detailed on the 
DIMet Wiki page of the GitHub repository.

3.2.1 Differential analyses
Here we illustrate the comparison between LDHA/B KO and 
Control P3 tracer metabolomics data at 48 h and their inte
gration with the corresponding transcriptomics datasets.

� First, we compared total metabolite abundances between 
LDHA/B KO and control P3 datasets, using the permuta
tion test, yielding 21 statistically differentially abundant 
metabolites (DAMs). As shown in Fig. 1A(a), alpha- 
ketoglutarate (AKG) levels were significantly increased in 
the KO condition (padj ≤0:05). 

� Second, in order to elucidate whether this increase is due 
to accumulation or to overproduction, it was necessary to 
investigate the labeling speed. We have thus analyzed 
both isotopologue and fractional contributions’ datasets, 
using the Wilcoxon’s rank sum test and the permutation 
test, respectively. As shown in Fig. 1A(b) we observed a 
significant decrease in the 13C enrichment for AKG and 
Glutamate, which was interpreted as a decline in labeling 
speed, suggesting, either a slower flux through their asso
ciated reactions, or an existence of an alternative path 
producing both metabolites from unlabeled sources. 

� Finally, to disambiguate these two possibilities, network- 
based analyses was performed using metabolograms (to 
enable this analysis, RNAseq data for the same samples 
was processed to obtain the set of differentially expressed 
genes) for TCA cycle and amino acids metabolism, see  
Fig. 1A(c). Network projection of these results indicated 
that a significant dysregulation of key genes encoding for 
the enzymes downstream and upstream of AKG (i.e. 
OGDHL, GLUL) favored the hypothesis of slow flux 
from AKG, which accumulates in the cell. Globally, the 
TCA cycle and the amino acids metabolism were signifi
cantly perturbed when the LDHA and LDHB genes were 
deleted in P3 cells exposed to hypoxia at 48 h. 

3.2.2 Time-course analysis
In the time-course analysis of the control P3 cells, the consec
utive timepoints were automatically compared (tiþ1 versus tiÞ

using the Wilcoxon’ rank sum test, and that for all three types 
of input data (Fig. 1B). MDV profiles underwent bivariate 
analysis (Spearman test). Malate total abundance, but not its 
labeling, increased. Interestingly, aspartate levels dropped, 
while its labeling increased. These findings suggest that unla
beled sources are used for synthesizing malate, whereas as
partate is consumed with time. Moreover, glutamate’s 13C 
enrichment has raised. This latter observation combined with 
a linear relationship between MDVs across all comparisons 
(e.g. 6 h versus 4 h: ρ ¼ 0:94; padj ¼ 0:006), indicated a sus
tained increase in labeling. A partial reconstruction of the 
metabolic map (Fig. 1B, right) provided a helpful mechanistic 
overview of this experiment.

4 Conclusion
The proposed workflow offers comprehensive functionalities 
for the analysis of tracer metabolomics data, covering differ
ential and time-course data analysis capabilities as well as in
tegration with transcriptomics data. We showcased its utility 
on a specific use-case to investigate glioblastoma metabolic 
adaptation under hypoxia. The tool is easy to install and is 
also available under a user-friendly Galaxy interface.

Supplementary data
Supplementary data are available at Bioinformatics online.
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