J 2024

Characterization of Aspergillus fumigatus secretome during sublethal infection of Galleria mellonella larvae

CURTIS, Aaron, Pavel DOBEŠ, Jacek MARCINIAK, Jana HURYCHOVÁ, Pavel HYRŠL et. al.

Basic information

Original name

Characterization of Aspergillus fumigatus secretome during sublethal infection of Galleria mellonella larvae

Authors

CURTIS, Aaron, Pavel DOBEŠ (203 Czech Republic, belonging to the institution), Jacek MARCINIAK (203 Czech Republic, belonging to the institution), Jana HURYCHOVÁ (203 Czech Republic, belonging to the institution), Pavel HYRŠL (203 Czech Republic, belonging to the institution) and Kevin KAVANAGH

Edition

Journal of Medical Microbiology, Microbiology Society, 2024, 0022-2615

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10606 Microbiology

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 3.000 in 2022

Organization unit

Faculty of Science

UT WoS

001292084000007

Keywords in English

Aspergillus; fungal–host interactions; Galleria mellonella; gliotoxin; proteomics

Tags

Tags

International impact, Reviewed
Změněno: 18/9/2024 09:53, Mgr. Marie Šípková, DiS.

Abstract

V originále

Introduction. The fungal pathogen Aspergillus fumigatus can induce prolonged colonization of the lungs of susceptible patients, resulting in conditions such as allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. Hypothesis. Analysis of the A. fumigatus secretome released during sub-lethal infection of G. mellonella larvae may give an insight into products released during prolonged human colonisation. Methodology. Galleria mellonella larvae were infected with A. fumigatus, and the metabolism of host carbohydrate and proteins and production of fungal virulence factors were analysed. Label-free qualitative proteomic analysis was performed to identify fungal proteins in larvae at 96 hours post-infection and also to identify changes in the Galleria proteome as a result of infection. Results. Infected larvae demonstrated increasing concentrations of gliotoxin and siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free haemolymph at 96 hours and could be categorized into seven groups, including virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours post-infection revealed changes in the abundance of proteins associated with immune function, metabolism, cellular structure, insect development, transcription/translation and detoxification. Conclusion. Characterizing the impact of the fungal secretome on the host may provide an insight into how A. fumigatus damages tissue and suppresses the immune response during long-term pulmonary colonization.