J 2024

Optimization of laser-driven quantum beam generation and the applications with artificial intelligence

KURAMITSU, Y., T. TAGUCHI, F. NIKAIDO, T. MINAMI, T. HIHARA et. al.

Basic information

Original name

Optimization of laser-driven quantum beam generation and the applications with artificial intelligence

Authors

KURAMITSU, Y. (guarantor), T. TAGUCHI, F. NIKAIDO, T. MINAMI, T. HIHARA, S. SUZUKI, K. ODA, K. KURAMOTO, T. YASUI, Y. ABE, K. IBANO, H. TAKABE, C. M. CHU, K. T. WU, W. Y. WOON, S. H. CHEN, C. S. JAO, Y. C. CHEN, Y. L. LIU, A. MORACE, A. YOGO, Y. ARIKAWA, H. KOHRI, A. TOKIYASU, S. KODAIRA, T. KUSUMOTO, M. KANASAKI, T. ASAI, Y. FUKUDA, K. KONDO, H. KIRIYAMA, T. HAYAKAWA, S. J. TANAKA, S. ISAYAMA, N. WATAMURA, H. SUZUKI, H. S. KUMAR, N. OHNISHI, T. PIKUZ, E. FILIPPOV, K. SAKAI, R. YASUHARA, M. NAKATA, R. ISHIKAWA, T. HOSHI, A. MIZUTA, Nima BOLOUKI (364 Islamic Republic of Iran, belonging to the institution), N. SAURA, S. BENKADDA, M. KOENIG and S. HAMAGUCHI

Edition

Physics of Plasmas, AIP Publishing, 2024, 1070-664X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10300 1.3 Physical sciences

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 2.200 in 2022

Organization unit

Faculty of Science

UT WoS

001233619700003

Keywords in English

Convolutional neural network; Artificial intelligence; Artificial neural networks; Machine learning; Astrophysics; Graphene; Spectroscopy; Tracking devices; Lasers; Plasma turbulence

Tags

Tags

International impact, Reviewed
Změněno: 10/6/2024 12:42, Mgr. Marie Šípková, DiS.

Abstract

V originále

We have investigated space and astrophysical phenomena in nonrelativistic laboratory plasmas with long high-power lasers, such as collisionless shocks and magnetic reconnections, and have been exploring relativistic regimes with intense short pulse lasers, such as energetic ion acceleration using large-area suspended graphene. Increasing the intensity and repetition rate of the intense lasers, we have to handle large amounts of data from the experiments as well as the control parameters of laser beamlines. Artificial intelligence (AI) such as machine learning and neural networks may play essential roles in optimizing the laser and target conditions for efficient laser ion acceleration. Implementing AI into the laser system in mind, as the first step, we are introducing machine learning in ion etch pit analyses detected on plastic nuclear track detectors. Convolutional neural networks allow us to analyze big ion etch pit data with high precision and recall. We introduce one of the applications of laser-driven ion beams using AI to reconstruct vector electric and magnetic fields in laser-produced turbulent plasmas in three dimensions.

Links

LM2018097, research and development project
Name: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav (Acronym: CEPLANT)
Investor: Ministry of Education, Youth and Sports of the CR