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Introduction 

Incidence of pancreatic ductal adenocarcinoma (PDAC) is increasing, particularly in western 

countries. In 2018, 458,918 new cases of PDAC were diagnosed worldwide [1]. In the United States, 

PDAC is the third most common cause of cancer mortality [2]. Only 15-20% of patients are diagnosed 

in early stage of disease when radical resection is considered the only potential curative approach 

[3]. Adjuvant chemotherapy with 5-fluorouracil, oxaliplatin, and irinotecan has improved 5-year 

survival rate and median overall survival (mOS) to 43.2% and 54.7 months, respectively [4]. 

However, due to the high rate of adverse events, less intensive chemotherapy is usually considered 

in daily practice. Thus, 5-year survival rate in resected PDAC population outside of clinical trials is 

only 17-20% [3,5,6]. Moreover, approximately 70-80% of patients with PDAC are diagnosed in 

inoperable locally advanced or metastatic stage, particularly due to the absence of specific 

symptoms. This results in poor prognosis with mOS of 12-16 months [7,8].  

Similar to PDAC, colorectal cancer (CRC) is significantly more frequent in developed countries 

with almost two million new CRC cases diagnosed globally in 2020 [9]. In the United States CRC is the 

second most common cause of cancer-related death [10]. Despite the existence of a CRC screening 

program in most countries, approximately 25% of newly diagnosed CRC patients have metastatic 

disease [11]. Moreover, a further 20% of curatively resected patients will develop metachronous 

metastases [12]. The 5-year relative survival rate for CRC is 65%, regardless of clinical stage [13]. In 

patients with distant metastases, 5-year survival rate is only 15.1%, despite systemic therapy [13].  

New therapeutic options improving prognosis of patients with these advanced tumours are 

needed. In the last two decades, there has been extensive research in the field of molecular biology; 

particularly focusing on diagnostic, prognostic, and predictive biomarkers. This has led to a deeper 

understanding of carcinogenesis, as well as to an expansion of therapeutic options in wide spectrum 

of tumour types, including PDAC and CRC.  
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Performing comprehensive genomic profiling (CGP) of tumour tissue based on next-

generation sequencing (NGS) can identify targetable genomic alterations, including homologous 

recombination deficiency (HRD)-associated variants. Currently, somatic NGS testing on sufficiently 

large gene panels is considered a standard of care in patients with advanced cancers. In the Czech 

Republic, NGS testing revealing potential targetable somatic variants is fully covered by health care 

insurance providers. HRD and non-HRD pathway gene variants may be used for the selection of 

patients feasible for the biomarker-driven therapy. Heeke et al.  reported that, in 52,426 NGS tests 

of tumour tissue, HRD pathway gene variants were detected in 15.4% of PDAC and 15% of CRC [14]. 

Tumour-only sequencing cannot easily distinguish the somatic and germline origin of these variants. 

Nevertheless, hereditary factors play an important role in carcinogenesis. In both PDAC and CRC 

patients, the prevalence of pathogenic germline variants (PGVs) is assumed to be at least 10% 

[15,16]. Thus, the genetic counselling and identification of these PGVs may have implications on 

screening of affected population as well as on indication of targeted therapy. However, this 

prevalence may be underestimated. Up to 57% of PDAC patients harbouring a PGV did not have a 

suspicious family history and did not meet prior National Comprehensive Cancer Network (NCCN) 

screening criteria for BRCA1/2 and PALB2 germline testing [17]. Another reason may be the use of 

relatively insufficiently large gene panels [16]. Uson et al. demonstrated that universal multigene 

panel testing (83 genes) in CRC patients indicated regardless of family history or age can detect PGVs 

in almost 16% of tested patients. Nevertheless, more than 50% of these PGVs would not be detected 

by using standard guidelines (NCCN, National Society of Genetic Counsellors, and American College 

of Medical Genetics, 2018 and 2020) or a guideline-specific gene panel [16]. Similarly, Samadder et 

al. conducted prospective multicentre study among patients with multiple solid tumours, including 

PDAC and CRC. This study demonstrated that universal multigene panel testing (83 genes) may 

detect PGV in 12.5% of patients (regardless of cancer type, sex, family history of cancer, age at 

diagnosis, stage of disease, etc). In half of these patients, PGVs would not have been detected using 

a standard guideline-based approach [18]. It is necessary to identify methods that may increase the 
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detection of PGVs. One of the possible approaches is the evaluation of the variant allele frequency 

(VAF). It is defined as the number of variant reads divided by the number of total reads (reported in 

percentage) within somatic sequencing and may serve as an indicator for germline testing outside 

the current indication criteria.  

In this single centre study, we evaluate patients with advanced and metastatic tumours who 

underwent somatic panel testing at the University Hospital Brno, Czech Republic. In PDAC and CRC 

patients, we describe their clinical characteristics and prevalence of gene variants suspected to be 

PGVs (cohort A). In addition to this, we present results from the local genetic database of patients 

diagnosed with PDAC and CRC who underwent germline sequencing according to standard screening 

criteria (cohort B). 

Methods 

A total of 358 patients with different advanced and pre-treated solid tumours having limited further 

therapeutic options were indicated for predictive testing of tumour tissue by the molecular tumour 

board (MTB) at University Hospital Brno, Czech Republic (cohort A). Samples were provided as 

Formalin-Fixed Paraffin-Embedded (FFPE) tissue specimens containing >20% neoplastic cells. Written 

consent was obtained prior to sample testing. 

Molecular genetic predictive testing was performed by the method of combined massively 

parallel sequencing (NGS) of genomic DNA fragments and total RNA obtained from FFPE tissue 

sections using the NGS assay TruSight Oncology 500 (Illumina) with the NextSeq 550 System 

(Illumina). The test is intended for the targeted sequence analysis of 523 cancer-relevant genes 

(single nucleotide variants, small insertions/deletions, and copy number variations) and 55 genes for 

known and novel gene fusions based on the principle of capturing and target enrichment. 

Analysis of sequence variants including copy number variation (CNV), microsatellite 

instability status (MSI) and tumour mutational burden (TMB) was performed using the Clinical 
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Genomics Workspace (CGW, PierianDx, USA) diagnostic software, according to the reference 

genome GRCh37.p13 annotating NCBI RefSeq v105 reference sequence. Method sensitivity was set 

at the 5% limit of variant detection in the examined material. The detected sequence variants were 

identified by CGW according to the currently valid international databases ExAC, dbNSFP, NHLBI ESP, 

ClinVar, COSMIC, dbSNP, gnomAD, in silico prediction algorithms and therapeutic guidelines. 

Based on the NGS analysis results targeted therapy was proposed within the MTB. Patients 

with PDAC and CRC were selected for further analysis. Pancreatic neuroendocrine tumours were not 

included. If the level of allelic frequency of clinically significant variant (VAF) within tested genes was 

found to be suspected of the germline variant form, additional genetic testing was recommended by 

a clinical geneticist attending the MTB in case it was not previously performed according to the 

standard screening criteria in both diagnostic subgroups (cohort A). Additional written consent from 

all tested patients was also required. 

Germline NGS testing of patients with PDAC and CRC who underwent germline sequencing 

according to the standard screening criteria (cohort B) was performed by use of in-house BRONCO 

custom sequencing panel intended for the targeted sequence analysis of 296 genes associated with 

hereditary tumour predispositions (single nucleotide variants, small insertions/deletions, and CNV) 

in combination with digital multiplex ligation-dependent probe amplification (dMLPA) by use of 

D001 Hereditary Cancer Panel 1 probemix assay (MRC Holland) enabling detection of copy number 

variants (large exon deletions and duplications) within 29 genes associated with hereditary tumour 

predispositions. Pathogenic variants were assessed by clinical relevance of affected genes: high risk 

(relative risk RR > 5 ), intermediate risk (RR = 2‒5 ) and low risk (RR = 1‒2 or uncertain). 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

utage/advance-article/doi/10.1093/m
utage/geae014/7679188 by M

asarykova U
niverzita user on 25 June 2024



 

 

Results 

Between February 2021 and October 2023, 358 patients (cohort A) with different inoperable, 

advanced, and pre-treated solid tumours were presented at the MTB and indicated for somatic 

testing by NGS. Tissue samples suitable for NGS testing were available in 323 cases (90%). Patients 

with PDAC (N = 37, 11.5%) and CRC (N = 48, 14.9%) were among the most common tested diagnosis 

and their median age was 63.5 years at the time of NGS testing. Forty-seven (55.3%) of them were 

males. Baseline characteristics of these patients are detailed in Table 1. 

 Based on the content of tumour cells (CTC) in selected tumour areas and the VAF 

score of clinically significant variant, MTB recommended genetic counselling in five (13.5%) 

patients with PDAC and in three (6.3%) patients with CRC who had not previously 

undergone genetic testing according to standard screening criteria because the patient had not 

been referred for testing by the treating physician. A positive family history of tumours 

associated with the pathogenic gene variant in first- and second-degree relatives was found in 

six of them (75%). In one PDAC patient with a RET mutation (c.2372A>T, VAF 49.0%, 

CTC: 30%), MTB recommendation for genetic counselling was not followed by the patient’s 

physician. Additional germinal testing confirmed a hereditary syndrome in all tested PDAC 

patients (4/4). Germline variants were found in following genes: ATM (c.3154-2A>G, VAF: 

63.1%, CTC: 20%), ATM (c.7630-2A>C, VAF: 58,6%, CTC: 30%), BRCA1 (c.2762delA, 

VAF: 54.9%, CTC: 30%), and BRCA2 (c.2251dupA, VAF: 67.4%, CTC: 20%).  

The case of a patient with a confirmed BRCA2 mutation can be used as an example of the 

significant impact CGP can have on therapeutic planning. This patient was diagnosed with metastatic 

pancreatic cancer in September 2022. Baseline staging was determined to be T4 (tumour involves 

vascular structures), N1 (metastases in 1-3 regional lymph nodes) and M1 (peritoneal distant 

metastasis) according to the computed tomography (CT) scan. Palliative chemotherapy with 

gemcitabine and nab-paclitaxel was started immediately after histological confirmation. In parallel 
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with systemic therapy, CGP was performed and a pathogenic gene variant in BRCA2 was identified. 

This result led to a modification of  systemic therapy to cisplatin-based chemotherapy in November 

2022 (gemcitabine plus nab-paclitaxel to gemcitabine plus cisplatin) yet without knowing the 

definitive result of the germline DNA sequencing. After three months of cisplatin-based therapy, 

significant tumour shrinkage was observed on the CT scan reassessment (Figure 1). However, 

persistent infiltration of vascular structures and T4N0M0 disease was still reported. Cisplatin-based 

chemotherapy was followed by poly (ADP-ribose) polymerase inhibitor olaparib as a maintenance 

strategy in February 2023 and radiotherapy (14 fractions of 2.67 Grays over 3 weeks) in April 2023. 

Olaparib was taken during radiotherapy and onwards until surgical resection with vein replacement 

performed in June 2023. Surprisingly, a complete pathological response was reported (ypT0N0) by 

an experienced pathologist with no evidence of metastatic disease perioperatively. At nine months 

after resection, the patient is still free of the disease without any subsequent therapy. In addition to 

the excellent therapeutic response achieved due to the finding of the BRCA2 mutation in the somatic 

tumour DNA and the respective change of therapeutic regimen, this finding also allowed subsequent 

confirmation of its germline origin and genetic counselling for the patient and her family.  

For the CRC subgroup, only three patients were tested for a suspicion of germline variants in 

FANCL (c.31C>T, VAF: 41.9%, CTC: 40%), APC (c.1548+1G>T, VAF: 78.8%, CTC: 30%), and FANCG 

(c.313G>6, VAF: 53.4%, CTC: 30%) genes, however no hereditary syndrome was confirmed in the 

first two cases. In a patient with FANCG variant, the final genetic report is not still available. A 

summary of PDAC and CRC patients with a suspicion of PGV according to the somatic testing is 

detailed in Table 2.  

Cohort B includes PDAC and CRC patients who were consulted by a clinical geneticist and 

tested for germline variants between January 2018 and November 2023. Indication for testing was 

based on the screening criteria that was valid at the time the patient was tested regardless of the 

MTB recommendation. Germline testing was performed by NGS and dMLPA. The median age of 
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patients in both subgroups was 59 years at the time of genetic counselling. In the PDAC subgroup, 50 

patients (26 females and 24 males) were analysed with 12 (24.0%) patients diagnosed with a PGV 

(12.0% high-risk variants, 10.0% intermediate- and low-risk variants). A further 12 (24.0%) patients 

were diagnosed with a variant of uncertain significance (VUS) only (Table 3). In the CRC subgroup of 

patients, 83 patients (42 females and 41 males) underwent germline testing with 14 (16.9%) tested 

positively for PGV (8.3% high-risk variants, 8.3% intermediate- and low-risk variants). In the 22 

following patients (26.5%), only VUS were detected (Table 4).  

 

Discussion 

This single-centre retrospective analysis highlights the clinical utility of CGP with regards to the 

possible detection of PGVs among patients with advanced PDAC and CRC with no previous genetic 

counselling. All patients were treated at the University Hospital Brno, Czech Republic. In total, 37 

PDAC and 48 CRC patients were tested. The main output of somatic testing is to determine the 

prediction of the effectiveness of targeted therapy considering the available evidence. In PDAC, 

actionable gene variants are present in up to 25% of cases [19]. In CRC, target therapy may be 

indicated in up to 80% of patients [20]. However, somatic testing and assessment of the VAF score of 

clinically significant variants in combination with the CTC in selected tumour areas may indicate a 

suspected hereditary syndrome.  

While germline testing should be currently indicated for all patients with PDAC regardless of 

the clinical stage, sex, age, and family history, not all physicians follow this recommendation in their 

daily routine [21,22]. Sequencing of tumour tissue identifying targetable gene variants is indicated in 

all advanced and metastatic PDAC. In the Czech Republic, somatic sequencing is fully reimbursed by 

all seven public health care insurance providers. Although the number of PDAC patients who 

underwent somatic testing at our centre was low, we identified five patients with no previous 
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genetic counselling with suspicion of PGV. The recommendation of MTB for germline testing was 

followed in four (80%) of them, and all were diagnosed with a hereditary syndrome (PGV in genes 

ATM, ATM, BRCA1, BRCA2). A family history of the patient with PGV in ATM (NM_000051.3) was 

negative, and this variant has developed de novo. In the patient with the BRCA2 variant, systemic 

chemotherapy was modified to a platinum-based regimen according to the results of somatic 

testing. This modification resulted in complete pathologic remission despite the original metastatic 

disease. Another PDAC patient, who relapsed (multiple liver metastases) during adjuvant 

chemotherapy with gemcitabine and subsequently underwent somatic testing with a suspicion of a 

germline BRCA1 variant, reached a complete clinical remission after platinum-based palliative 

systemic therapy. A germline BRCA1 variant was finally confirmed during palliative therapy.  

 In CRC patients, germline sequencing should be recommended if screening criteria were met 

(if there are at least three relatives in the family with carcinoma associated with hereditary 

nonpolyposis colorectal cancer – Lynch syndrome, endometrial carcinoma, carcinoma of small 

intestine, ureter and kidney; if one of them is a first-degree relative of the other two; if at least two 

generations are affected; if at least one patient was younger than 50 years at the time of diagnosis) 

[23]. Similar to PDAC, CRC patients with proven advanced or metastatic disease should be 

considered for somatic sequencing.  The MTB recommended only three CRC patients with no 

previous genetic counselling for germline testing at our centre. However, no hereditary syndrome 

was confirmed in two tested patients.  

Currently, an increasing number of trials have demonstrated improved survival parameters 

and quality of life if actionable gene variants were targeted by a specific inhibitor. In the following 

text, we mention the most relevant gene variants with the possibility of targeted therapy for both 

diagnostic subgroups. Kirsten rat sarcoma viral oncogene homolog (KRAS) has been the most studied 

oncogene that has the highest mutation rate in the vast majority of tumour types, including PDAC 

(>90%) and CRC (~50%). Until recently, KRAS was historically considered undruggable for decades. 
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However, KRAS G12C-mutant selective irreversible inhibitors, such as sotorasib and adagrasib, have 

demonstrated meaningful clinical activity in heavily pre-treated patients with metastatic KRAS G12C-

mutated PDAC and CRC [24,25]. Many other KRAS selective inhibitors are currently being 

investigated in ongoing clinical trials, including multi-KRAS p.G12X inhibitors (KRAS p.G12A, KRAS 

p.G12D, KRAS p.G12R, KRAS p.G12S, or KRAS p.G12V) [26]. In 10% of PDAC patients, no KRAS 

mutations are found. In this KRAS wild-type population, multiple alternative gene variants are 

commonly presented and may be targeted by specific inhibitors.  

Human epidermal growth factor receptor 2 (HER2) amplification is present in approximately 

2% and 2-5% of PDAC and CRC patients, respectively [27,28]. Multiple HER2 inhibitors improved 

mOS and median progression-free survival (PFS) in metastatic CRC [29,30]. However, only a marginal 

effect was observed in PDAC patients [31,32].  

Activating p.V600E mutations in B-raf murine sarcoma viral oncogene homolog B (BRAF) are 

presented in 3% and 10% of PDAC and CRC, respectively [33,34]. Inhibition of BRAF may lead to 

reactivation of MAPK signalling, including EGFR and MEK, which are considered to be a dominant 

driver in many tumour types [35]. A combination of BRAF p.V600E and MEK inhibitors has 

demonstrated significantly improved survival parameters in a wide spectrum of tumour types [36]. 

Based on the ROAR basket trial results, a combination of dabrafenib and trametinib should be 

considered in all tumours harbouring BRAF p.V600E mutation, including PDAC [36,37]. In CRC, a 

combination of BRAF p.V600E inhibitor encorafenib, EGFR inhibitor cetuximab, and MEK inhibitor 

binimetinib resulted in significantly longer mOS and higher overall response rate (ORR) compared to 

standard therapy [38].  

BRCA1/2 are genes encoding proteins with a key role in homologous recombination [39,40]. 

Mutations and loss-of-function variants of these genes are responsible for HRD, which is associated 

with the inability to repair double-strand DNA breaks. Thus, PDAC and other tumours harbouring a 

HRD are significantly responding to DNA damaging and cross-linking agents such as platinum 
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derivatives, as was demonstrated in our two cases [41,42]. The efficacy of platinum-based 

chemotherapy among PDAC patients with germline variants in HRD-associated genes was confirmed 

in multiple studies with a response rate of 70% [43,44]. Somatic BRCA1/2 variants are present in 2% 

of PDAC. Rucaparib is a PARP inhibitor, and its effect has been tested in pretreated patients with 

either somatic or germline BRCA1/2 variants. One partial response and one complete response were 

confirmed in a group of advanced or metastatic PDAC with somatic variants [45]. In CRC patients 

with variants in HRD-associated genes, only a marginal effect of platinum-based therapy was 

demonstrated, and further studies are needed [46]. 

NTRK1/2/3 fusions are rare in PDAC and CRC with a prevalence of less than 0.8% [47,48]. 

However, inhibitors such as larotrectinib and entrectinib are highly effective as monotherapy among 

patients with TRK-fusion cancers, including PDAC and CRC. Larotrectinib led to an ORR of 79% with 

16% CR and a median duration of responses of 35.2 months [49]. Currently, TRK inhibitors are 

approved by the FDA and EMA as a tumour-agnostic therapy.  

Microsatellite instability (MSI-H)/mismatch repair deficient (dMMR) is present in less than 

2% of PDAC and in 15% of CRC patients and is associated with a deficiency in protein products of 

MSH2, MLH1, MSH6, or PMS2 genes [50-52]. Lynch syndrome is caused by inherited germline 

variants in one allele followed by somatic inactivation of the wild-type allele in a colonic epithelial 

cell. The second cause of MSI-H/dMMR is somatic inactivation of both of the alleles [52]. Genetic 

counselling should be recommended in all cancer patients with MSI-H, regardless of age [53]. In 

PDAC, MSI-H/dMMR is commonly associated with wild-type KRAS and TP53 [50]. Somatic or 

germline mutations in mentioned genes may result in response to immunotherapy with checkpoint 

inhibitors. Pembrolizumab is a PD-1 inhibitor and leads to significantly longer PFS in first-line therapy 

for MSI-H/dMMR metastatic CRC compared to standard chemotherapy [54,55]. However, in MSI-

H/dMMR patients with PDAC, only one complete and three partial responses were observed among 

22 analysed patients in a single-arm phase II trial KEYNOTE-158 [56].  
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Although the number of PDAC and CRC patients who underwent CGP for therapeutic 

planning at our centre is small, results suggest that this approach may also help to detect hereditary 

syndromes, especially in PDAC. It may have significant outcomes particularly among patients who 

did not have a suspicious family history and did not meet standard screening criteria for germline 

testing.  
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Legend to figure: 

Fig. 1. CT in porto-venous phase, axial planes. Images A and B show a large pancreatic tumour 

(arrows) before treatment (classified as cT4N1M1), which infiltrates the branches of the ceoliac 

trunk (asterixis), inferior vena cava (asterixis) and completely thromboses the portal vein (asterixis). 

After treatment (C, D), the original pancreatic infiltrate was significantly reduced in 

size (arrows; classified as ycT4N0M0, but CT cannot reliably distinguish residual tumour changes 

from post-treatment changes), pathologic densities continue to contact the branches of the coeliac 

trunk (asterixis) and stenotize the portal vein (asterixis).  

 

Abbreviations to tables:  

Tab. 2.  

Abbreviations: cCR – clinical complete remission (not resected); CRC – colorectal cancer; F - female; 

M – male; NA – not available; pCR – pathologic complete remission (resected); PDAC – pancreatic 

ductal adenocarcinoma; VAF - variant allele frequency.  

 

Tab. 3. 

Abbreviations: F - female; M – male; VUS - variant of uncertain significance.  

 

Tab. 4.  

Abbreviations: F - female; M – male; VUS - variant of uncertain significance. 
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Table 1 

All N = 85 

Cancer types 

Pancreatic cancer 

Colorectal cancer 

 

37 (11.5%) 

48 (14.9%) 

Sex in pancreatic cancer subgroup 

Male 

Female 

Sex in colorectal cancer subgroup 

Male 

Female 

 

17 (45.9%) 

20 (54.1%) 

 

30 (62.5%) 

18 (37.5%) 

Age at the time of diagnosis, pancreatic cancer subgroup, years  

Mean 

Median 

Range 

Age at the time of diagnosis, colorectal cancer subgroup, years  

Mean 

Median 

Range 

 

58.3 

60.6 

34.7-78.7 

 

58.3 

60.5 

33.9-78.3 

Race 

White 

 

85 (100%) 

Stage 

Metastatic 

 

76 (89.4%) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

utage/advance-article/doi/10.1093/m
utage/geae014/7679188 by M

asarykova U
niverzita user on 25 June 2024



 

 

 

 

 

  

Locally advanced – inoperable 9 (10.6%) 

No. of lines of systemic treatment at the time of NGS testing 

Median 

Range 

 

2 

1-5 
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Table 2 

Diagnosi

s 

Se

x 

Age 

(years

) 

Suspected gene 

and variant – 

somatic testing 

VAF 

scor

e (%) 

Conten

t of 

tumour 

cells in 

selecte

d 

tumour 

area 

(%) 

Recommendatio

n for the genetic 

counselling 

followed by a 

physician 

YES/NO 

Hereditar

y 

syndrome 

confirme

d YES/NO 

Family 

history 

positiv

e 

YES/N

O 

Clinical 

outcome

s YES/NO 

PDAC M 53 ATM 

(NM_000051.3) 

c.3154-2A>G 

p.? 

63.1 20 YES YES NO NO 

PDAC F 59 BRCA2 

(NM_000059.3) 

c.2251dupA 

p.T751Nfs*2 

67.4 20 YES YES YES YES - pCR 

PDAC M 62 RET 

(NM_020975.4) 

c.2372A>T 

p.Y791F 

49.0 30 NO NA YES NA 

PDAC M 43 BRCA1 

(NM_007300.3) 

c.2762delA 

p.Q921Rfs*79 

54.9 30 YES YES YES YES - cCR 

PDAC F 75 ATM 

(NM_000051.3) 

c.7630-2A>C 

p.? 

58.6 30 YES YES YES NO 

CRC M 65 FANCL 41.9 40 YES NO YES NO 
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(NM_001114636.

1) 

c.31C>T 

p.Q11* 

CRC M 66 APC 

(NM_000038.5) 

c.1548+1G>T 

p.? 

78.8 30 YES NO NO NO 

CRC F 58 FANCG 

(NM_004629.1) 

c.313G>6 

p.E105* 

53.4 30 YES NA YES NA 
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Table 3 

Sex Age 

(years) 

Gene 

 

Gene variant 

 

High-risk variant 

YES/NO 

Intermediate- and low-

risk variant  

YES/NO 

VUS 

YES/NO  

F 46 MUTYH c.536A>G NO YES NO 

F 45 ERCC2 c.1867dup NO YES NO 

M 39 MUTYH 

MSH3 

c.453_458dup  

c.2732T>G 

NO 

NO 

YES 

NO 

NO 

YES 

F 79 BRCA2 c.1023_1024del YES NO NO 

F 72 MPL c.127C>T NO YES NO 

F 68 POLE c.4523G>A NO NO YES  

M 47 BRCA2 c.8338G>A NO NO YES  

F 66 PMS1 

MUTYH 

c.654dup 

c.1301C>T 

YES 

NO 

NO 

NO 

NO 

YES  

F 40 BRCA2 

CHEK2 

c.9435_9436 

c.1421G>A  

YES 

YES 

NO 

NO 

NO 

NO 

F 70 MLH3 c.1390T>C NO NO YES  

M 53 ATM c.3154-2A>G YES NO NO 

F 59 BRCA2 c.2251dup YES NO NO 

F 70 STK11 c.1150C>T NO NO YES  

M 52 PMS2 c.113C>T YES NO NO 

M 42 BRCA1 c.2762del YES NO NO 

M 76 POLE c.861T>A NO NO YES  

M 68 MLH3 c.562C>T NO NO YES  

F 43 PALB2 c.1544A>G NO NO YES  

F 60 NF1 c.7781G>T NO NO YES  

M 61 MSH3 c.2336G>A NO NO YES  
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F 74 ATM c.7630-2A>C YES NO NO 

M 60 MLH3 

POLD1 

c.1724A>G) 

c.961G>A 

NO 

NO 

NO 

NO 

YES 

YES 

F 59 PALB2 c.3235G>T NO NO YES  

M 64 ATM c.5218A>G NO NO YES  
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Table 4 

Sex Age 

(years) 

Gene 

 

Gene variant 

 

High-risk 

variant 

YES/NO 

Intermediate- 

and low-risk 

variant  

YES/NO 

VUS 

YES/NO 

M 41 POLD1 

MSH3 

c.154_171 del18 

c.196_204 del9 

NO 

NO 

NO 

NO 

YES  

YES 

M 69 PMS1 

POLD1 

c.479C>T 

c.1294C>G 

YES 

NO 

NO 

NO 

NO 

YES 

M 79 SMAD4 c.554C>T NO NO YES  

F 53 BRCA1 c.213-12A>G YES NO NO 

F 53 ERCC2 c.361-1G>A NO YES NO 

M 67 PMS1 c.224C>T NO NO YES  

M 48 SMAD4 c.10_11delAT YES NO NO 

F 68 BRIP1 c.728T>C NO NO YES  

M 45 MLH1 c.1990-2A>C YES NO NO 

F 40 MLH3  

PMS1 

c.2115_2118del 

c.2380A>T 

NO 

NO 

YES 

YES 

NO 

NO 

M 49 POLD1 c.455C>T NO NO YES  

M 68 ATM c.3279_3282del (p.Asn1094fs) YES NO NO 

F 40 POLD1 c.328C>T NO NO YES  

F 48 BRCA1 c.878C>T NO NO YES  

M 81 POLE c.6019G>A NO NO YES  

M 60 ATM 

POLE 

MSH6 

c.7322T>C 

c.1583C>T 

c.1061C>T 

NO 

NO 

NO 

NO 

NO 

NO 

YES  

YES 

YES 

M 67 POLE c.5650A>G NO NO YES  

M 43 APC c.7105C>T NO NO YES  

M 62 FAN1 c.2916+2T>G NO YES NO 

F 73 MSH2 c.2255G>A NO NO YES  

M 44 MSH2 c.131del YES NO NO 
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M 58 MSH5 

BRCA2 

c.404G>A 

c.-12T>C 

NO 

NO 

NO 

NO 

YES 

YES 

M 64 POLE c.6019G>A NO NO YES 

F 43 PMS2 

BARD1 

c.1567T>A 

c.2224T>A 

NO 

NO 

NO 

NO 

YES  

YES 

F 72 CDK12 

BLM 

c.1047-2A>G 

c.44G>A 

NO 

NO 

YES 

NO 

NO 

YES  

M 73 CDKN2B c.256G>A NO NO YES  

F 54 PMS2 c.2240G>C NO NO YES  

F 54 PMS1 c.1912G>A NO NO YES  

F 42 PALB2 c.1544A>G NO NO YES 

F 35 RECQL5 c.717T>G NO YES NO 

F 50 APEX1 c.872dup NO YES NO 

M 34 APC 

MITF 

MPL 

CHEK1 

exon 15-16 deletion (hg19) 

c.952G>A 

c.992G>A 

c.236G>A  

YES 

NO 

NO 

NO 

NO 

YES 

YES 

YES 

NO 

NO 

NO 

NO 

F 59 TP53 c.1016A>G NO NO YES  

F 48 MSH6 c.3600A>G NO NO YES  

M 80 MSH5 c.2419A>G NO NO YES  

M 49 CHEK2 

BRCA2 

exon 9-10 deletion 

c.1793C>T 

YES 

NO 

NO 

NO 

NO 

YES  

M 72 NBN c.171+1G>C NO YES NO 
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Figure 1 
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