Detailed Information on Publication Record
2024
Adjoint functor theorems for lax-idempotent pseudomonads
ARKOR, Nathanael Amariah, Ivan DI LIBERTI and Fosco LOREGIANBasic information
Original name
Adjoint functor theorems for lax-idempotent pseudomonads
Authors
ARKOR, Nathanael Amariah (826 United Kingdom of Great Britain and Northern Ireland, belonging to the institution), Ivan DI LIBERTI (380 Italy) and Fosco LOREGIAN
Edition
Theory and Applications of Categories, Mount Allison University, 2024, 1201-561X
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Canada
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.500 in 2022
Organization unit
Faculty of Science
UT WoS
001243753800001
Keywords in English
adjoint functor theorem; relative adjunction; lax-idempotent pseudomonad; KZ-doctrine; free cocompletion; pseudodistributive law; 2-category; formal category theory
Tags
Tags
International impact, Reviewed
Změněno: 15/7/2024 16:23, Mgr. Marie Šípková, DiS.
Abstract
V originále
For each pair of lax-idempotent pseudomonads R and I, for which I is locally fully faithful and R distributes over I, we establish an adjoint functor theorem, relating R-cocontinuity to adjointness relative to I. This provides a new perspective on the nature of adjoint functor theorems, which may be seen as methods to decompose adjointness into cocontinuity and relative adjointness. As special cases, we recover variants of the adjoint functor theorem of Freyd, the multiadjoint functor theorem of Diers, and the pluriadjoint functor theorem of Solian-Viswanathan, as well as the adjoint functor theorems for locally presentable categories. More generally, we recover enriched Φ-adjoint functor theorems for weakly sound classes of weight Φ.