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ABSTRACT: Computational study of the effect of drug candidates on
intrinsically disordered biomolecules is challenging due to their vast and
complex conformational space. Here, we developed a comparative Markov
state analysis (CoVAMPnet) framework to quantify changes in the
conformational distribution and dynamics of a disordered biomolecule in
the presence and absence of small organic drug candidate molecules. First,
molecular dynamics trajectories are generated using enhanced sampling, in
the presence and absence of small molecule drug candidates, and ensembles
of soft Markov state models (MSMs) are learned for each system using
unsupervised machine learning. Second, these ensembles of learned MSMs
are aligned across different systems based on a solution to an optimal
transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states
is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and
biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3
therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in
Alzheimer’s disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and
SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42
more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical
analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into
SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly
applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
KEYWORDS: soft Markov state models, intrinsically disordered proteins, adaptive molecular dynamics, Alzheimer’s disease, Aβ42 peptide,
drug candidates, tramiprosate, 3-sulfopropanoic acid

■ INTRODUCTION
Alzheimer’s disease (AD) is globally the fifth leading cause of
death and fourth cause of disability in people aged 75 years and
above and thus represents an enormous societal burden.1

Amyloid-beta (Aβ) peptides play a major role in the develop-
ment of AD, although the mechanism behind their toxicity is still
debated.2,3 A model of toxicity known as the oligomer
hypothesis states that Aβ oligomerizes into toxic pore-forming
oligomers at the neuronal plasma membrane, which ultimately
leads to cell death. Among the different Aβ peptides, the 42-
residue long peptide (Aβ42; Figure 1A) is the most aggregation-
prone isoform.4,5

The Aβ peptides are intrinsically disordered, which makes
them difficult to study both experimentally and computationally.
Intrinsically disordered proteins do not adopt a single well-
defined structure, but rather exist as ensembles of conformations
with similar energies. These ensembles are best characterized by
their population distributions and probabilities of several

properties or descriptors (e.g., radius of gyration and secondary
structure).6,7 The disordered nature of Aβ42 significantly
complicates the analysis of its molecular dynamics (MD)
trajectories, namely, the definition of conformational states,
which is an important step toward a deeper understanding of the
system and its slowest transitions.8 A popular approach for
identifying notable conformational states in MD simulations
involves building so-called Markov state models (MSMs).
Under the assumption of the dynamics being Markovian
(memoryless), these models cluster the conformational space
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into states preserving the Markovianity of the transitions and
estimate the equilibrium distribution and transition rates
between the states. The conventional methods for building
MSMs typically rely on a selection of collective variables,
compressing the high-dimensional MD data and simplifying the
clustering. Recent progress in variational approaches for
conformational dynamics has further allowed scoring different
MSMs, e.g., based on their ability to approximate the slowest
modes of the dynamics, thus facilitating the development of
automatic frameworks for the identification of Markov states.9

Although some of these procedures are quite advanced and
enable, e.g., an accurate estimation of transition rates even from
biased simulation data,10 the manual selection of the collective
variables is typically laborious and can often cause the resulting
models to fail the tests for Markovianity. While MSMs are
extremely valuable tools, they possess certain limitations, such as
the assumption of Markovianity, constraints on state represen-
tation granularity, reliance on extensive sampling, and relatively
rapid relaxation dynamics.11−14 Several alternative method-
ologies exist to address these shortcomings. These include

hidden Markov models (HMMs) to relax the Markovian
assumption,12 approaches incorporating memory effects such
as the generalized master equation (GME) and the generalized
Langevin equation (GLE) for more effective dynamic property
assessment,11 and methods rooted in deep learning.15

A powerful framework based on deep learning is VAMPnet, a
neural network that learns a probabilistic assignment of each
simulation frame to individual states in an unsupervised manner
by maximizing a variational score.16 In contrast to the other
methods, the VAMPnet approach does not relax the
Markovianity assumption but rather combines the search of
collective variables with the optimization of a cost function to
efficiently identify the slowest modes of the system. The
application of VAMPnets to the analysis of Aβ42 trajectories has
already shown great potential in producing robust MSMs for
quantification of the Aβ42 kinetics and equilibrium properties.17
Several recent methods build on the VAMPnet approach to
address the efficiency of protein representation,18,19 scalability
to multidomain protein systems,20 stability of the training
process,21 sampling of rare conformations,22 or the importance

Figure 1. Structures of Aβ42 peptide and the studied small molecules, and properties of the ensembles from the adaptive simulations for the free Aβ42,
Aβ42 + TMP, and Aβ42 + SPA. A) Sequence of the Aβ42 peptide and chemical structures of tramiprosate (TMP) and 3-sulfopropanoic acid (SPA) in
the dominant protonation states at the physiological pH 7.4. The sequence residues are color-coded as follows: red for negatively charged; blue for
positively charged; green for hydrophobic; and black for polar neutral residues. B) Total secondary structural propensity (% SS) of Aβ42 during the
adaptive MDs, in the original NMR ensemble (PDB 1Z0Q with 30 structures), and from the experimental measurements of free Aβ42 in aqueous
solution. C) Secondary structure propensity of Aβ42 by residue, obtained for the global ensembles from the adaptive simulations. The certainty of the
secondary structure assignment was obtained by the statistical variance among ten randomized bins of frames and is represented by the saturation of
the secondary structure color (the more saturated the color, the more certain the assignment, as indicated by the legend). D) Distribution of the radius
of gyration (Rg) of the ensembles from the same adaptive simulations. E) Time evolution of the secondary structure of Aβ42 during the time-based
aligned adaptive samplingMD simulations. The secondary elements are aggregated across all 42 residues, averaged at each time over all the trajectories
parallel in time according to the time-based alignment. Only the timespan covering at least 20 parallel trajectories is plotted.
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of residues based on the attention mechanism.18,23 However, to
the best of our knowledge, a method for aligning and comparing
ensembles of learned MSMs across different systems that would
simplify the biophysical interpretation of the conformational
states by identifying their distinctive features is still missing. In
this work, we have developed such a method to help understand
and quantify the effects of drug candidates on the conforma-
tional space of the analyzed system.
This problem is important in many fields of research,

particularly in AD. Due to the prevalence and severity of the
disease, there is a growing interest in pharmaceuticals capable of
preventing the early stages of the Aβ42 oligomerization and
stopping the pathogenic amyloid cascade.3,4,24 Tramiprosate
(TMP), also known as homotaurine or 3-amino-1-propane-
sulfonic acid, is a naturally occurring aminosulfonate. Even at
high concentrations, it is well tolerated in the human brain,
where it is metabolized into 3-sulfopropanoic acid (SPA)
(Figure 1A). TMP has been reported to prevent the formation of
fibrillar forms of Aβ, reduce the Aβ-induced death rate of
neuronal cell cultures, and lower the amyloid plaque deposition
in the brain.25−27 Clinical trials have shown its ability to slow
down the cognitive decline in patients with homozygous
expression of the apolipoprotein E gene APOE4, similarly to
FDA-approved aducanumab.24,28 TMP can act not only on Aβ,
but also on other pathways that contribute to cognitive
impairment in AD and other neurologic disorders.29,30 ALZ-
801 is a valine-conjugated prodrug of TMP that is currently in
phase 3 of clinical trials for early stage AD patients bearing the
APOE4/4 genotype (NCT04770220).31,32 Preliminary in vitro
and in silico studies suggested that both TMP and SPA can lock
the Aβ peptides in monomeric conformations that are less prone
to oligomerization, thus inhibiting the first step in the
pathological pathway of Aβ.33−35 However, these studies do
not provide sufficient insights to fully explain the mechanism of
action of thesemolecules on Aβ. At themoment, it is still unclear
whether TMP or its metabolite SPA can exert a stronger
biological effect, and this was one of our motivations to carry out
this study.
To analyze the effect of TMP and SPA on Aβ and understand

how these small molecules may prevent the formation of Aβ
oligomers and fibrils, we developed a new computational
framework called comparative Markov state analysis (CoVA-
MPnet). The CoVAMPnet framework reveals the impact of a
small molecule (in our case, TMP or SPA) on the conforma-
tional space and dynamics of an intrinsically disordered
biomolecule (in our case, Aβ) in three steps. First, molecular
dynamic trajectories are generated using enhanced sampling,
and an ensemble of soft MSMs is computed for each system by
training VAMPnet neural networks.17 In particular, we
simulated the monomeric Aβ42 peptide in its free form and in
the presence of drug candidates TMP or SPA. Second, using our
novel alignment method, these ensembles are aligned to identify
similar conformational states across the different systems based
on a solution to an optimal transport problem. This proved
useful in quantifying the similarities and differences in Aβ42
conformations in response to the presence or absence of the
small molecules. Finally, our new approach based on analyzing
gradients of the trained neural networks is used to elucidate the
patterns underlying the learned MSMs and to understand the
biophysical relevance of the molecular features, namely, the
directional inter-residue distances, for the classification into each
state. To our knowledge, this is the first time that such a
biomolecular relevance analysis has been used to compare and

interpret MSMs built by unsupervised machine learning
methods and quantify the effects of drug candidates on the
conformational space of a disordered protein. Experimental
comparison of Aβ42 in its free form and in the presence of TMP
or SPA by circular dichroism (CD), Fourier-transform infrared
spectroscopy (FTIR), nuclear magnetic resonance (NMR), and
fluorometry has further shown the effects of the small molecules
on longer time scales, complementing our computational
findings.

■ MATERIALS AND METHODS
Here, we present only a concise description of themethods used,
focusing mainly on the novel methodology. A complete and
detailed description is provided in Supporting Information and
Methods.
Molecular Dynamics (MD) Simulations

System Preparation. The structures of tramiprosate
(TMP) and 3-sulfopropanoic acid (SPA) were constructed
and minimized using Avogadro 2.36 During the calculation of
partial charges, the structures were further optimized by
Gaussian 09,37 and the antechamber module of AmberTools
1638 was then used to prepare the force field-compatible
parameters. The three-dimensional structural data of the Aβ42
peptide were obtained from the RCSB Protein Data Bank39

(PDB entry 1Z0Q). It resulted from NMR experiments and
contains 30 structures, which were saved separately. The Aβ42
peptide was protonated using PROPKA40 at physiological pH
7.4, the small molecules were embedded (when appropriate),
the systems solvated, and their topologies built using high-
throughput molecular dynamics (HTMD)41 in combination
with the CHARMM36m42 (C36m) force field. We used a
stoichiometry of 100 molecules of TMP or SPA per molecule of
Aβ42. This ratio approximates the experimental conditions
(1000:1) without compromising the computational costs of the
simulations.
MD Simulation Protocols. All the systems were equili-

brated using HTMD.41 The end point of the equilibration cycle
was taken as a starting point for subsequent MD simulations,
either classic or adaptive sampling ones. The simulations
employed the same settings as the last step of the equilibration,
and their trajectories were saved every 0.1 ns. HTMD was used
to perform adaptive sampling of the Aβ42 conformations. Due
to the conformational complexity of Aβ42, three protocols
(namely, A, B, and C) were assessed. Each protocol differed
from the others in the starting structure set, the adaptive metric,
the number of adaptive epochs and replicas, and the total
cumulative MD time (Table S1). Protocols A and B were only
applied to free Aβ42, while protocol C was applied to free Aβ42,
Aβ42 + TMP, and Aβ42 + SPA.
Classical MD simulations were also performed using HTMD,

where only the structure of the first model of the PDB entry
1Z0Q was used as the starting point. The free Aβ42, Aβ42 +
TMP, and Aβ42 + SPA systems were prepared and equilibrated
as described above. These MDs were performed using only the
C36m force field. EachMDwas run in sequential batches of 200
ns each, for a total of 5 μs, and 10 independent replicates were
performed for each system.
Analyses of Properties in CombinedMDEnsembles. In

order to analyze the produced MD simulations, their topologies
were converted from CHARMM to AMBER using ParmEd43

when required. Water molecules and ions were filtered out from
the resulting MDs, which were then compiled into a simulation
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list using HTMD. The cpptraj44 module of AmberTools 1638

was used to compute several properties in the combined
ensembles: root-mean square deviation (RMSD), radius of
gyration (Rg), and linear interaction energy (LIE)

45 between
Aβ42 and TMP or SPA. DSSP 3.046 was used to assign a
secondary structure to every residue in every snapshot of the

combined trajectories, and the default DSSP seven-letter
alphabet was converted to the three main secondary elements
(α-helix, β-strand, and coil, see MD analysis section in
Supporting Information and Methods). Accounting for all the
residues of each secondary structure type in the peptide for all
the analyzed snapshots resulted in the total secondary structure

Figure 2. Analysis of conformational states learned using the variational approach toMarkov processes on the adaptive simulations and their evolution
in time. A) Properties of the states. For each system, we report: (i) the free energy surface (FES) projected on the first two tICA dimensions (gray
maps), where darker shades correspond tomore negative energy regions; (ii) flux diagrams overlapping the FES and projected on the same tICA space,
where each state is represented by a colored circle with the area proportional to the state probability, and the arrows indicate the mean first-passage
timesTM between the states, with the thickness proportional to the transition probability; (iii) equilibrium distribution of the states (bottom-left corner
of FES; the bars represent the 95th percentile of values centered around the median from the ensemble of 20 learned models; see Supplementary Note
7 for details); (iv) superimposition of 20 representative structures from each state, selected based on the highest assignment probability (below FES,
enclosed in colored circles); (v) global mean secondary structure content of each state (below the respective structures). B) Distribution of the learned
states in time (top) and the number of frames available at each time point (bottom). The adaptive sampling trajectories were aligned in time and
concatenated. The state probability at a given time point was computed as the average soft assignment of all available frames at this time point. From
left to right, the state assignments evolve from the beginning to the end of the simulation time. All plots are shown for the free Aβ (left), Aβ + TMP
(middle), and Aβ + SPA (right). The states are numbered and color-coded consistently across the entire panel; the same colors across different systems
indicate aligned states.
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content of the ensemble. Mechanics/generalized Born solvent
accessible surface area (MM/GBSA)47,48 calculations were
performedwith theMMPBSA.py.MPI47 module of AmberTools
14 to obtain the free energy of the peptide for every frame of the
ensemble, from which the peptide intramolecular interactions
were derived.
Comparative Markov State Model Analysis (CoVAMPnet)

This section describes our comparative Markov state analysis
(CoVAMPnet) of adaptive sampling MD simulations of the free
Aβ42, Aβ42 + TMP, and Aβ42 + SPA systems. CoVAMPnet
builds on the variational approach to Markov processes by
VAMPnet neural networks, followed by two new analyses: (i)
alignment of the learned MSM ensembles across different
systems based on a solution to an optimal transport problem and
(ii) characterization of the learned states by the inter-residue
distances based on the neural network gradients.
Learning Markov State Models Using Neural Net-

works. The variational approach to Markov processes
(VAMP)49 was used to learn Markov state models (MSMs)
via unsupervised training of VAMP neural networks (VAMP-
nets)16 with physical constraints.50 VAMPnet learns a nonlinear
function that maps the peptide tertiary structure to a vector of
state probabilities. The physical constraints ensure that the
learned MSM is reversible and that the elements of the matrix
representing the governing Koopman operator16 (a linear
operator propagating the state probabilities in time) are non-
negative. In this work, we used the VAMPnet implementation by
Löhr et al.,17 including the self-normalizing setup.51

The VAMPnet architecture consists of two parallel weight-
sharing lobes: one for a frame at time t and the other for a frame
at time t + τ in the same trajectory, where τ is a fixed lag time.
Each frame was represented on the input as a vector (780
elements) of the upper triangular part of the peptide inter-
residue heavy atom distance matrix without the diagonal and the
first two subdiagonals (i.e., without the distances to the first and
second neighboring residues). The output nodes in each lobe
measure the probabilities of the constructed MSM states for the
input frame. The network was trained on pairs ofMD simulation
frames separated by a selected lag time τ. To obtain the
probabilities of the learned states, the frames were run through
one of the lobes. For each system, an ensemble of 20 models was
built. The pairs of frames were divided into 20 random splits
(90% training and 10% validation) and for each split, three
VAMPnet models were trained with different initialization and
the one with the highest VAMP-E score49 was selected for the
MSM ensemble. The soft assignment of a frame was defined as
the average of its state probabilities across the ensemble, whereas
the hard assignment was defined as the state with the highest
probability in the soft assignment of the frame. Throughout this
work, the soft assignments were used everywhere unless it was
necessary to select example frames from a particular state (such
as the example structures in Figure 2A or the frames representing
the states for the columns of the matrix in Figures S22). Further
details on our VAMPnet setup are described in Supporting
Information and Methods.
Alignment of Learned States for Comparative Anal-

ysis.The order of the states on the output of a trained VAMPnet
is not well-defined and may thus vary. To construct an MSM
from multiple models or compare MSMs of different systems, a
correspondence between states across the models had to be
established. In this work, we generalized the approach from Löhr
et al.17 for the alignment of states within a single system to obtain

an ensemble of aligned MSMs. Then, we introduced a new
method for the alignment of ensembles of MSMs between
different systems to compare the systems and further understand
the effects of the small molecules on the conformational
dynamics of Aβ42.

Aligning States within a Single System. The states from the
20 models within an ensemble were aligned by a constrained k-
means clustering algorithm52 using the average inter-residue
distance matrices Dm

n , where n indexes the models in the
ensemble and m indexes the states in each model. The cluster
centers were initialized by the Dm

n0 matrices of a randomly
selectedmodel n0 in the ensemble. The clustering iterated in two
steps: 1) for eachmodel n, its states were sequentially assigned to
different clusters in the order of the proximity of theDm

n matrix to
the closest unassigned cluster center and respecting the
constraint that two matrices from the same model cannot be
assigned to the same cluster; 2) each cluster center was
recomputed as themean of theDm

n matrices of the corresponding
states. These two steps were iterated until the cluster assignment
did not change. The states in each model were then renumbered
according to the final assigned cluster. The method by Löhr et
al.17 is equivalent to performing only one iteration of our
method. Our approach is thus less susceptible to incorrect
initialization and can lead to a better alignment.

Aligning Ensembles of Markov State Models Between
Different Systems.With each system described by an ensemble
of N mutually aligned MSMs after the single system state
alignment (see above), we proposed a novel method for aligning
ensembles of MSMs across different systems. In particular, we
(i) characterized each state of the given system by a
nonparametric distribution over the ensemble, (ii) defined a
distance metric to compare such distributions, and finally, (iii)
computed an alignment of the ensembles of MSMs between the
two systems by solving an optimal matching problem. Details of
these steps are given next. The N instances of the VAMPnet
network learned for a given system s output N different feature
matrices { } =Dm

sn
n
N

1 (average inter-residue matrices, see Support-
ing Information and Methods for a formal definition of the
feature matrix) describing each of the M states of the system.
Each state m was, therefore, characterized by the distribution

( )m
s of the features over the different VAMPnet instances as

=
=N

D( )
1

( )m
s

n

N

m
sn

1 (1)

where δ is the Dirac delta function defined over the feature space
of inter residue distances in which the simulation frames are
represented and Dm

sn is the inter-residue distance matrix
representing state m of the learned model n for system s. m

s

thus represents the state m of system s with a nonparametric
distribution given by the set of Dirac functions centered at the
feature matrices Dm

sn obtained by the instances of the learned
ensemble.
To exploit the entire distribution of the features of each state,

the distance between two different states was evaluated by
comparing their respective distributions. In particular, we
employed the Wasserstein distance of two distributions as a
distance measure quantifying the cost of aligning two states from
different MSMs as

=c d ( , )ml
s s

W m
s

l
s1 2 1 2 (2)
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where cml
s s1 2 is the cost of aligning statem of system s1 with state l of

system s2 and d ( , )W m
s

l
s1 2 is the Wasserstein-1 distance of the

two respective distributions defined as

= || ||d inf( , ) , ( , )W m
s

l
s

( , )m
S

l
s

1 2
1 2 (3)

where ( , )m
s

l
s1 2 is the set of joint distributions whose left and

right marginals are m
s1 and l

s2, respectively, and ||ξ, ξ′|| is the
Euclidean distance of the two feature vectors ξ, ξ′ distributed
according to the joint distribution γ(ξ, ξ′). In the case of
empirical nonparametric distributions (such as in our case), the
problem of Wasserstein-1 distance computation has an
equivalent linear program formulation and it was solved using
an optimal transport algorithm.53

Finally, the alignment of MSM ensembles was formulated as
an optimization problem. Without the loss of generality, let us
assume that theMSM representing system s1 does not havemore
states than the MSM representing system s2. The problem was
defined as

=
=

carg mins s

m

M

m m
s s

1
( )s s s s

s

1 2

1 2 1 2

1
1 2

(4)

where Ms1
is the number of states of the MSM estimated for

system s1,
s s1 2 is the set of all bijections from the states of system

s1 into any Ms1
-sized subset of states of system s2, and the

bijection s s1 2 is the optimal mapping of states of system s1 onto
the states of system s2. This optimization problem, and thus also
the alignment of MSM ensembles, was solved using the
Hungarian algorithm.54

Gradient-Based Characterization of Learned States.
The differentiability of the VAMPnet model enables inter-
pretation of the states by investigating the feature importance,
which is hard to do using classical Markov state models. This
analysis aimed to understand how important the different parts
of the protein structure (here represented by the peptide inter-
residue distances) are for the definition of different states. While
there exist different methods to investigate the importance of
features in neural networks,55,56 they are usually applied to single
models for simple tasks, such as the classification of individual
images. The challenge of adopting those methods for the current
study was in calculating the feature importance for an ensemble
of MSMs. We proposed a method to identify which features
were important for the classification of the simulation frames
into the learned states, building on the gradient-based method
proposed for image classification.56 In our approach, we
computed the gradients for each of the models in the MSM
ensemble separately and aggregated their results over the
ensemble. To this end, the MSMs produced by the models
needed to be aligned, which we did by using our state alignment
method discussed earlier (see Aligning states within a single
system). The gradients for individual Markov states were
computed as follows:

=
=

g
N

( )
1

m
n

N

nm
1 (5)

where gm is a 780-dimensional vector containing the ensemble-
averaged gradient of the output probability of statem computed
with respect to the input features ξ;N is the number of models in
the ensemble; ∇ξ is the operator of gradient with respect to the
coordinates of the network input features ξ; and χnm represents

the output node corresponding to statem of nthVAMPnetmodel
in the ensemble. Here, the 780-dimensional network input
vector was obtained by vectorizing the upper triangular inter-
residue distance matrix and removing the diagonal and two
subdiagonals. The intuition is that the ith entry of vector gm
expresses the change in the probability of the assignment of the
given frame of the simulation to state m induced by an increase
in the distance of the ith pair of residues at the input of the
VAMPnet network. The above definition computes the gradient
value for an individual frame of the system. To aggregate the
gradient value over a representative set of frames from the
investigated system, we evaluated the gradient vector gm as the
average of gm over 10,000 randomly selected simulation frames ξ.
For visualization purposes, we took the 780-dimensional vector
of evaluated gradients{ } =gm m

M
1 and arranged it back into a 42 ×

42 matrix corresponding to the shape of the inter-residue
distance matrix. These gradients evaluated and averaged over
randomly selected frames should express the importance of
particular residues on average for the classification into a specific
state without any particular assumptions about the input frame.
Estimation of the Free Energy Landscape.We estimated

the free energy landscape of Aβ42 for each of the studied
systems, projected on the first 2 time-lagged independent
component analysis (tICA) dimensions, by performing
Gaussian kernel density estimation on 10% of the simulated
frames.17

Experimental Validation

Aβ42 in its monomeric form (N-methionine-Aβ42 or N-Met-
Aβ42) was produced and purified following an adapted version
of the protocol by Cohen et al.57 Spectroscopic properties of N-
Met-Aβ42 alone or in the presence of TMP, SPA, and the
membrane-mimicking hexafluoroisopropanol (HFIP) were
measured using circular dichroism (CD), Fourier-transformed
infrared spectroscopy (FTIR), and nuclear magnetic resonance
(NMR). Aggregation kinetics were recorded using thioflavin T
(ThT) assays.58 A 1000-fold molar excess of TMP or SPA with
respect to the concentration of N-Met-Aβ42 was used, to
replicate the experimental conditions previously reported to
exert biological effects from those molecules.33

■ RESULTS

Selection of the Computational Protocol for the Simulation
of Aβ42
We aimed to query, by molecular dynamics (MD) simulations,
the conformational diversity and dynamics of Aβ42 (the most
aggregation-prone and the second-most abundant isoform of
Aβ4,5) and the effect of small molecules on such dynamics. The
molar excess of small molecules with respect to Aβ42 was lower
in the simulations (100-fold) than in the experiments (1000-
fold), but it ensured sufficient interactions with the peptide (see
Supplementary Note 1). Some of the key parameters to consider
in any MD simulation are (i) the starting conformation, (ii) the
MD technique and its length, and (iii) the force field. For the
starting conformation, we chose a structure of the full-length
peptide obtained from liquid state NMR (PDB ID 1Z0Q;59 see
Supplementary Note 2 and Figure S1). Because of its enhanced
ability to sample events occurring in longer timescales,60−62 we
applied adaptive sampling. This method consists of several MD
trajectories simulated in parallel and over multiple consecutive
epochs, in an adaptive approach. The MDs from each epoch are
iteratively seeded from selected snapshots from previous MDs,
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according to a predefined criterion. This criterion defines a
feature (also calledmetric or collective variable), and the objective
is to maximize the variability of that feature sampled in the
overall simulation (in this case, the secondary structures).41,63

Based on the literature,64 we explored the AMBER ff14SB65

(hereafter termed A14SB) and CHARMM36m42 (C36m) force
fields as the ones likely to provide reasonable ensembles to study
Aβ42. Notably, C36mwas developed specifically for intrinsically
disordered proteins and has already been used with Aβ42.35 We
tested different combinations of parameters in three adaptive
sampling protocols and compared the results to the initial
structure, experimental data,59,66 and previous reports.8 The
goal was to obtain conformations of Aβ42 diverging from the
initial NMR structure (membrane-like environment) and to
reach average secondary structure ratios that approximate the
experimental ones (in aqueous environment). The selected
protocol used the C36m force field and A14SB was discarded
(protocol C; see Supplementary Note 2, Table S1, and Figures
S2−S4). The respective MD ensembles seemed to be well
converged (Figure S5).
Secondary Structure Content in Simulations of Free Aβ42
and Aβ42 with Ligands
To compare the simulations of Aβ42 alone and in the presence
of an excess of TMP and SPA (Figure 1A), we first analyzed the
global secondary structure content of the peptide in the three
systems (Figure 1B). In the adaptive simulations of free Aβ42,
the peptide showed a larger ratio of coils (77.5%), followed by
the α-helices (16.8%) and finally the β-strands (5.7%). In the
presence of TMP, the α-helix content of Aβ42 peptide increased
by 11.1 p.p. to 27.9%, while the ratio of β-strands remained
unchanged (5.8% vs 5.7%). In the presence of SPA, the
differences in the secondary structure were more striking. In this
case, the content of α-helices was nearly the same as in the
original NMR structure (41.6% vs 42.1%), the ratio of coils was
slightly lower (56.1% vs 57.9%), and the β-strands were half of
those in free Aβ42 (2.3% vs 5.7%). This remarkable result
suggests a strong effect of SPA in preserving the α-helical
structures of Aβ42.
We analyzed the secondary structures in more detail,

dissecting the different propensities by the sequence residues
(Figure 1C). The results showed that Aβ42 could adopt a coiled
structure over its entire sequence, with the highest fractions in
the N-terminal residues 1−8. Helical structures were most
significant for residues 10−20, with α-helical structures near and
above 40% and decreasing in further residues. The β-strands
were the least frequent element, present at the C-terminal tail of
the peptide (residues 30−41) and, to a lesser degree, also around
residues 2−8 and 17−20. This is in agreement with Tomaselli et
al., who reported the formation of an antiparallel β-sheetmade of
two β-strands containing amino acids 18−22 and 37−41.59
TMP had little effect on the secondary structure distribution,
only slightly increasing the frequency of helical structures in the
regions that already had a propensity for it (residues 9−28) and
reducing the β-strands in the N-terminal residues 2−8.
However, the inclusion of SPA resulted in a substantial
reduction of the β-strand content in residues 2−20 and 30−41
and in a significant increase of helical propensity in residues 9−
28 and 30−37. Thus, we observed that both studied Aβ
modulators (TMP and SPA) could increase the regular
structures, specifically protecting the α-helix content of the
Aβ42 peptide. The effect was notably stronger with SPA, which

also prevented or slowed down the transitions from helices into
coils and β-strands.
We further analyzed the different MD ensembles and

calculated the radius of gyration (Rg) to assess the compactness
of the Aβ42 peptide in the three systems. We found that the free
Aβ42 alone had a significantly (with p value < 10−4 from the t-
test) broader and more skewed distribution of Rg (average Rg =
14.2 ± 4.3 Å) than in the presence of TMP or SPA (Rg = 13.3 ±
3.1 and 11.8 ± 2.1 Å, respectively; Figure 1D). This indicates
that the free Aβ42 had a population of extended conformations
that was not found in the presence of TMP or SPA. SPA showed
a particularly strong effect on shifting Aβ42 toward more
compact conformations, compared to the other two systems.
Interestingly, Löhr and coworkers recently reported an
aggregation inhibitor that presented the opposite effect and
stabilized the extended, higher-entropy conformations of
Aβ42.67
Effects of Ligands on the Evolution of Secondary

Structure Elements Over Time.To understand the evolution
of secondary structure elements in the adaptive sampling
simulations, we first performed the time-based alignment and
concatenation of the MDs (Supplementary Note 3 and Figure
S6). We computed the evolution of the mean secondary
structure content along the continuous simulation time of the
aligned and concatenated simulations (Figure 1E). We observed
that the different secondary structure ratios evolved quickly in
the free Aβ42, decreasing for α-helices and increasing for coils
and β-strands. In the presence of TMP, those values changed
similarly but more slowly, while SPA induced the slowest
changes. Classical MDs showed similar trends toward the
apparition of coils and strands over time. However, the capacity
of the small molecules to preserve helical elements was not as
pronounced as in adaptive-samplingMDs (Supplementary Note
4, Figures S7−S9, Table S2). We can speculate that performing
longer simulation times might result in a further decrease in the
levels of α-helices and an increase of β-strands.
Conformational Analysis of Ligand Effects Using Markov
State Models

Initially, we tried to construct conventionalMarkov state models
(MSMs) to analyze the adaptive sampling simulations and
characterize the conformational states of Aβ42. Different
metrics and settings were tested, namely, the RMSD of the Cα
atoms, the secondary-structure, the self-distance of all Cα atoms,
and combinations of those metrics (Supporting Information and
Methods). However, none of these analyses produced reliable
models (see example in Figures S10−S12), so we decided to use
the recently published method for MSM construction using
artificial neural networks. We further extended that method with
new analyses, which proved highly useful for comparing different
systems and improving the interpretability of the results.
Construction of Variational Markov State Models.We

approached the construction of MSMs with VAMPnet16 by
testing several lag times (25, 50, 75, and 100 ns) and different
numbers of Markov states (2, 3, 4, and 5). Since we are
interested in identifying the major differences among the three
systems (free Aβ42, Aβ42 + TMP, Aβ42 + SPA), we prioritized
the characterization of a fewmajor macrostates rather thanmany
microstates. For this reason, we explored only a relatively small
number of states, as done previously by Löhr et al.17 According
to the implied time scales plots (Figure S13) and the Chapman−
Kolmogorov tests (Figure S14), we selected τ = 25 ns as the final
lag time. By evaluating the impact of the additional states on the
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change in the frame classification (Figure S15), together with
considering the transition rates for each state, we decided to use
the 3-state MSM for all the studied systems. Using the selected
parameters, we re-estimated the MSMs for MD simulations
generated by protocol C. We first constructed 16 subsets of data
by gradual addition of epochs to the training and validation data.
From the models, we calculated the exact transition proba-
bilities, mean first-passage times, and transition rates (Figure
S16), as well as the respective structural propensities (Figures
2A and S17). Finally, we verified that additional data did not
significantly affect the estimated implied time scales and that the
size of our data sets was thus sufficient for VAMPnet training
(Figure S18).
Evaluation of the Effect of Using the Soft versus the

Hard Assignment. Interestingly, we found the models to be
quite certain about the classification of frames into the learned
states, thus diminishing the differences between the hard and
soft assignment. For free Aβ42, Aβ42 + TMP, and Aβ42 + SPA,
we found 99%, 99%, and 98% of the frames, respectively, to be
classified into one of the states with probability higher than 95%.
Alignment of Learned States Across Systemswith and

without Ligands. To automatically detect similar conforma-
tional states across different systems and compare the estimated
MSMs, we developed and applied a novel alignment method.
This method aligns different states, by minimizing the global
cost of alignment of MSM ensembles and produces alignment
costs for each pair of matched states Te (see Alignment of
learned states). To distinguish truly aligned states from those
without a counterpart in the other system, we considered two
states as aligned only if their alignment cost was lower than the
threshold Te = 6 (see Supplementary Note 5). This threshold
was selected empirically by comparing the visualized structures
(Figure 2A), the secondary structure content, and contact maps
(Figure S17) of the states proposed for mutual alignment. This
approach allowed us to find two similar states between free Aβ42
and Aβ42 + TMP (states 1 and 2), and one similar state between
free Aβ42 and Aβ42 + SPA (state 1; see Figure S19).
Comparison of Learned States Across Systems with

and without Ligands. The evolution and kinetics of the
constructed MSMs for the studied systems are shown in Figure
2, as well as a representative ensemble of structures for every
state. The free Aβ42 system (Figure 2, left) was characterized by
a sparsely populated source state (state 1, pink, 10% equilibrium
probability), a dominant sink state (state 2, orange, 86%
equilibrium probability), and a metastable transition state
between them that was the least populated of all (state 3,
green, 4% equilibrium probability). The kinetic roles (source
and sink) were derived from the transition kinetic rates and the
mean first-passage times, and from the secondary structure
contents of each state. Hence, the source state (1, pink), with the
structural content most resembling the starting NMR structure
(ca. 58% coil, 40% α-helices, and 2% β-strands), converted fast
into the sink state (2, orange; TM = 2.6 μs), and could be
reasonably formed from the transition state (3, green; TM = 14.6
μs). The sink state was characterized by disorder, with the
highest contents of coils and β-strands and the lowest contents
of α-helices. The transition state represented a middle point in
terms of secondary structure content, and it converted faster into
the source or sink states than it was formed. This kinetic
ensemble is in good agreement with the results previously
described by Löhr et al. for the monomeric Aβ42, namely, in
terms of microsecond transition times between the states, the

presence of one dominant state that was mainly disordered, and
the inexistence of long-lived folded states.17

According to our alignment method, the Aβ42 + TMP system
(Figure 2, center) had counterparts in the free Aβ42, namely, the
disordered sink state (orange) and the helical-rich source state
(pink). The equilibrium probability of the sink was slightly
reduced (state 2, orange, 75%), and the more helical source was
slightly increased (state 1, pink, 12%). A new transition state
appeared in this system (lime, 14% equilibrium probability),
with intermediate secondary structure propensities and a higher
α-helical content compared to the transition state in the free
Aβ42. Perhaps for this reason, the cost of their alignment was
above the selected threshold (Figure S19), and the state was thus
considered a newly formed state. This was supported by the
visualized structures (Figure 2A) and the detailed secondary
structure and contact maps for the respective states (Figure
S17). Overall, the MSM ensemble for the Aβ42 + TMP system
showed higher variability of the equilibrium distribution.
Interestingly, the kinetics of this system was rather similar to
that of the free Aβ42 but significantly slower, generally with
higher transition mean-times. As in the case of the free Aβ42, the
formation rates of the disordered sink state 1 were higher than its
conversion into the other states.
The simulations of Aβ42 + SPA produced a clearly distinct

MSM (Figure 2, right), with the equilibrium distribution more
uniform than in the other two systems. Furthermore, the
confidence intervals of the equilibrium probabilities were even
wider, and the free energy landscape appeared more
homogeneous, implying that the states in Aβ42 + SPA were
less clearly defined compared to the other systems. According to
our alignment procedure, only the source state of Aβ42 + SPA
(state 1, pink, 46% equilibrium probability) found its counter-
part in the free Aβ42 system. The secondary structure content of
this state was similar to the corresponding one in the free Aβ42
and the starting NMR structure (61% coil, 36% α-helices, and
3% β-strands). It is noteworthy how the addition of SPA
disrupted the kinetic ensemble: the remaining two states differed
significantly from those of the free Aβ42, as demonstrated by the
high alignment costs (Figure S19) and the secondary structure
contents. Strikingly, in contrast with the previous two systems,
the unstructured sink state disappeared as the two new
unmatched states with high α-helix contents occurred. This
was especially the case of state 2 (blue, 23% equilibrium
probability), which containedmore α-helices (48.7%) and fewer
coils (50.6%) than the initial NMR structure (42.1% and 57.9%,
respectively). This state 2 evolved over time into state 3 (purple,
31% equilibrium probability; Figure 2B), which had the fastest
conversion to the source state, and thus could hardly be
considered a “sink” state. All three states interconverted between
each other rather quickly, withTM values in the lowmicrosecond
range, suggesting a dynamical metastable equilibrium around
the source state. All these observations are supported by the
study of the time-evolution of the states in the different
simulations (Supplementary Note 6, Figure S20).
We also calculated the radius of gyration (Rg) of the different

states (Figure S21). The free Aβ42 system presented the largest
dispersion of Rg values, with its states showing peaks at higher
values, while for Aβ42 + SPA, all the states displayed low Rg
dispersion and peaks at low values (between 10.6 and 11.0 Å).
This observation is in agreement with the Rg calculations on the
global MD ensembles, discussed above, suggesting that the
systems differ intrinsically in their degrees of structural order and
compactness.
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Characterization of Learned Conformational States
via Network Gradients. To better understand the differences
between the states in each MSM, we attempted to interpret the
molecular features that were determinant to the assignment of
each state. For that, we visualized the ensemble-averaged
gradients of the state assignment probabilities obtained from the
learned neural network models. Figure 3 shows that the
elements near the diagonal were the most important for the
classification into the respective states. As our representation
does not consider the distances of the residues to their first and
second neighbors in the primary sequence, the colored pixels
along the empty diagonal in each heatmap correspond to the
distances of the residues to their third neighbors in the sequence.
Since this roughly corresponds to the length of one turn in an α-
helix (ca. 4 residues), the consistently red or blue color of the
two subdiagonals closest to the white diagonal to the presence or
absence of helices, respectively. This interpretation is also
supported by the average secondary structure content per
residue and the average contact maps (Figure S17).
For the free Aβ42 system, the peptide residues around

positions 10−25 seem to be crucial for the state classification.
The results in the free Aβ42 state 1 heatmap imply that if the red
colored residues in this region got closer to their third and fourth
sequence neighbors in a particular snapshot, the probability of
classifying that snapshot into state 1 (source state) would
increase. This means that state 1 prefers a helical conformation
in this region. On the contrary, the “state 2” heatmap shows that
the probability of classification into state 2 would increase if the
blue-colored residues in this region got farther from their third
and fourth sequence neighbors, i.e., state 2 (sink state) prefers
disorder in this region. The classification into state 3 relies on the

same region (residues 10−25) but is split into two parts:
residues 13−19 (red) and the rest (gray). This implies that state
3 (transition state) prefers a short helix only in residues 13−19.
For the Aβ42 + TMP system, the corresponding heatmaps

show that the presence (red) or lack (blue) of a helix at positions
29−36 are important for distinguishing between states 1 and 3,
respectively, while state 2 can be discriminated based on the lack
of a helix at positions 10−25. For Aβ42 + SPA, the lack (blue) or
presence (red) of a helix at positions 3−12 is relevant for
discriminating states 1 and 3, respectively. State 2 differs by the
presence of two helices at positions 20−27 and 30−35 (red) as
well as by long distances between residues in positions 10−17
(blue pattern).
The states can be compared in more detail by evaluating the

gradients on sets of state-specific frames (Figure S22).
Conversely, the gradient matrices can also be aggregated by
residue into simpler but still very informative plots (Figure S23).
These can help to readily assess the most influential regions
defining the states, compare different systems, and potentially
cross-validate the results with other residue-based analyses, e.g.,
from experimental data (see below).
Molecular Interactions

Ligand−Peptide Interactions. The interactions of TMP
and SPA with Aβ42 were assessed by the linear interaction
energy (LIE)45 and computed for all the 100 ligand molecules
with each peptide residue during the adaptive sampling
simulations. For this purpose, all the snapshots in the
simulations were used. The electrostatic component (ΔGbind

elec)
dominated the interactions formed by Aβ42 with both TMP and
SPA, overshadowing the van der Waals component (Figure

Figure 3. Gradients of the state assignment probabilities of the learned variational Markov state models. Each 42 × 42 heatmap shows the ensemble-
averaged gradients of the model probabilities for the corresponding system and state with respect to the input inter-residue Cα distances. The color
indicates how the probability of the particular state would change for an input frame if the distance between the particular pair of residues increased:
blue indicates that the probability of the state assignment would increase if the distance between the Cα atoms increased whereas red indicates that the
probability would increase if that distance decreased. The presented visualizations correspond to ensemble-averaged gradients evaluated and
aggregated over 10,000 randomly selected simulation frames. Columns: MSMs for the free Aβ42 (left), Aβ42 + TMP (middle), and Aβ42 + SPA
(right) systems. Rows: states 1 (top), 2 (middle), and 3 (bottom) of each model.
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S24). Those interactions were, on average, much stronger with
the charged residues (Figures 4 and S25). This was expected,
considering that both TMP and SPA bear two charges at
physiological pH, separated by only a short alkyl chain (positive
and negative charges in TMP, and two negative charges in SPA).
SPA showed both attractive and repulsive interactions
(respectively, positive and negative ΔGbind

elec; Figure 4); TMP
showed mostly favorable interactions (negative ΔGbind

elec;
Figure S25). The absolute mean interaction energies were also
higher with SPA (from −114 to 71 kcal/mol) than with TMP
(from −50 to 0 kcal/mol). Moreover, the interactions were
highly variable due to the rapid exchange of the TMP and SPA
molecules, which formed unspecific short-lived interactions with
Aβ42. This explains the large populations of snapshots with a
lower range of interaction energies and the smaller populations
of snapshots with strong interactions with the charged residues.
Although TMP and SPA have quite similar structures, the

global effects of SPA on Aβ42 were more striking than those of
TMP. This is probably due to the fact that SPA has a double
negative charge, which reverses the charge of positive groups it
interacts with. Conversely, TMP is zwitterionic (with positive
and negative charges) and thus preserves the charge around the
interacting residues. A comprehensive comparison of the
properties of TMP and SPA and their effects on the simulations
of Aβ42 is presented in Table S3.
Intramolecular Interactions of Aβ42. The interactions

within the Aβ42 peptide were calculated using the molecular
mechanics/generalized Born solvent accessible surface area

(MM/GBSA) method.47,48 Interestingly, the electrostatic
energy prevailed over the van der Waals, but the polar solvation
energy outweighed all the other contributions to the internal free
energy of Aβ42 (Table S4 and Supplementary Note 8). The
peptide was more stable (lower mean total free energy) in the
presence of TMP or SPA than alone in solution. This
stabilization was mainly due to the solvation energy, which
indicates a higher exposure of polar residues to the solvent than
the free Aβ42. This effect is concomitant with an increase of the
internal hydrophobic contacts in the presence of TMP or SPA,
which is consistent with an increase of the compactness of the
peptide, according to the Rg values reported above (Figure 1D).
Intramolecular salt bridges E22-K28 and D23-K28 have been
reported to be important for the conformational transition,
oligomerization, and toxicity of Aβ42.68,69 Analysis of the three
ensembles showed that these salt bridges occurred considerably
less often in the presence of TMP than in the free Aβ42, and
even less with SPA (Figure S26). This suggests a lower
propensity of Aβ42 to form oligomers in the presence of those
small molecules. Due to their charged moieties, TMP and SPA
induce electrostatic dispersion on the residues involved in the
salt bridges, thus weakening those interactions (Table S3).
Similar observations have previously been reported for
apolipoprotein E (ApoE) interacting with SPA.70

Experimental Validation

To validate our computational findings described above, we
experimentally characterized the conformations of N-methio-
nine-Aβ42 (N-Met-Aβ42) alone and in the presence of TMP

Figure 4. Interactions of SPA with Aβ42 studied by molecular dynamics. A) Violin plot of the binding energy of SPA with each residue of Aβ42. The
electrostatic component (ΔGbind

elec) was calculated for all the 100 molecules in every snapshot of the adaptive simulation of Aβ42 + SPA. The plot
shows the distribution of the energy values; the black dots show the mean values; the y-axis uses a quasi-logarithmic scale based on the inverse
hyperbolic sine to highlight the higher absolute values. The residue labels are colored by charge: black for neutral, blue for positive, and red for negative.
The chemical structure of SPA is shown in the upper-right corner. B) Structure of Aβ42 with the main interacting residues. Aβ42 is shown as the putty
cartoon, and the main interacting residues are represented by sticks (structure from PDB ID 1Z0Q). The colors reflect the mean ΔGbind

elec (in kcal/
mol) and range from the most positive (blue) to the most negative (red) values obtained for SPA.
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and SPA. The presence of N-terminal methionine was necessary
for the Aβ42 recombinant expression and does not influence its
aggregation behavior. This is demonstrated by the routine use of
N-Met-Aβ42 in aggregation studies.71,72 Circular dichroism
(CD) of N-Met-Aβ42 in aqueous buffer revealed that the
peptide was mainly disordered (68% of coils, 29% of β-strands,
and 3% of α-helices; Figures 5A and S27A). To replicate the
NMR structure obtained in 20% (v/v) of hexafluoroisopropanol
(HFIP), used herein as the starting conformation for the
computational analysis, we titrated the N-Met-Aβ42 with
increasing concentrations of HFIP. At 20%HFIP, the secondary
structure content of N-Met-Aβ42 was heavily changed in favor
of the α-helices, in agreement with the literature59 (Figure S28).
We repeated the titrations in the presence of a 1000-fold excess
of TMP or SPA. In all cases, no major changes in the CD spectra
were induced by the small molecules during the titrations
(Figures S27A and S28). N-Met-Aβ42 remained mostly
disordered at 0% HFIP and had almost similar helical and

strand content at 20% HFIP, independently of the presence of
TMP or SPA. This is not in agreement with the computational
results, which predicted a significant increase of the helical
content of Aβ42 with the small molecules, especially with SPA.
To determine whether the molecules induced subtle changes

in secondary structure that are below the resolution limit of CD
spectroscopy, we analyzed the N-Met-Aβ42 in buffer and in the
presence of the small molecules using Fourier-transformed
infrared spectroscopy (FTIR). Based on the secondary structure
deconvolution of the amide I bands,73 the FTIR spectra of free
N-Met-Aβ42 and N-Met-Aβ42 + SPA showed fingerprints from
both helical (peak at around 1660 cm−1) and strand
contributions (peak below 1650 cm−1) (Figures 5B and S27B
and S29). At 1000-fold excess of TMP, a shift of the peak
wavenumbers was observed (Figure 5B). The spectrum for N-
Met-Aβ42 + TMP had one peak centered around 1650 cm−1

instead of 1660 cm−1, which might suggest more random
conformation (coils) of N-Met-Aβ42 in the presence of TMP

Figure 5. Experimental validation of computational data using biophysical techniques. A) Circular dichroism spectra of Aβ42. N-Met-Aβ42 (37 μM)
was studied in the absence (black) or presence of a 1000-fold excess of TMP (green), SPA (blue), or 20% HFIP (dashed curves). The curves for SPA
were trimmed below 205 nm to remove the signal from SPA. B) FTIR spectra of Aβ42. N-Met-Aβ42 (60 μM) was studied in the absence (black) or
presence of a 1000-fold excess of TMP (green) or SPA (blue). The bars represent the standard deviations from successive acquisitions. The second
derivatives are drawn as dashed curves. Offset was shifted to improve readability. C) NMR analysis of Aβ42. 1H−15N HMQC NMR spectra of 15N-
labeled N-Met-Aβ42 were determined alone (black, 69 μM) and in the presence of a 1000-fold excess of TMP (green, 58 μM) or SPA (blue, 55 μM).
Assignment is given for free N-Met-Aβ42 (black); the assignment of His6 was ambiguous, thus no CSP was calculated for this residue. D) NMR
chemical shift perturbation (CSP) of Aβ42. N-Met-Aβ42 in the presence of a 1000-fold excess of TMP (green), or SPA (blue) with respect to the free
N-Met-Aβ42. The red dashed line represents the threshold for significance, taken as the standard deviation of all CSPs. E) Summary of the effects of
small molecules on Aβ42 conformations studied by three different biophysical techniques: - indicates that no significant effect was detected, + indicates
a mild effect, and ++ a stronger effect.
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compared to the free peptide. Nonetheless, the large overlap of
the two peaks casts doubts on such interpretations. Further
remarks on differences in secondary structure propensities are
discussed in Supplementary Note 9.
To gain deeper insights into conformational changes of N-

Met-Aβ42 upon the addition of the small molecules, we
employed nuclear magnetic resonance (NMR). The 1H−15N
HMQC spectral fingerprint of N-Met-Aβ42 revealed a narrow
distribution in δ(1H) of the backbone amides (from 7.5 to 8.5
ppm), a characteristic of intrinsically disordered peptides
(Figures 5C and S30). Using 1H−1H NOESY and
1H−1H−15N NOESY-HMQC spectra, we assigned the spectral
fingerprint and computed the secondary structure propensities
using chemical shift indexing.74,75 This method is based on the
published NMR statistics, where each residue is expected to
have a chemical shift within a certain region of the spectrum that
is a function of its local secondary structure. The resulting global
secondary structure propensity was much higher in α-helices
than what was previously obtained by CD (29.6% vs 3%,
respectively; Figure S27A,C). The secondary structure proba-
bilities of the different residues showed the highest β-strand
propensity for the C-terminal tail, and the highest helical
propensity of residues 15−25 (Figure S27D). This is in
agreement with the results from our simulations for the free
Aβ42 (Figure 1C). We titrated N-Met-Aβ42 with increasing
concentrations of TMP or SPA, up to a 1000-fold excess
(Figures 5C and S30) and measured the chemical shift
perturbation (CSP) in the 1H−15N HMQC spectral fingerprint
(Figure 5D). The threshold for the CSP significance was taken
as the standard deviation of all chemical shifts.76 Only small
CSPs were observed when adding SPA, which were not
sufficient to indicate a shift in the global secondary structure
(Figure S27C). This is not unprecedented, as others have also
reported minimal changes in the NMR spectrum of Aβ42 upon
the binding of small molecules.77 CSP was observed across most
of the peptide sequence in the presence of SPA, namely in
regions 2−7, 11−17, 20, 22−27, and 32−37. Strikingly, these
regions correspond to peptide ranges that emerged in the
gradient-based analysis of learned conformational states
(namely, regions 3−12, 10−17, 20−27, 30−35; Figures 3 and
S23). In the presence of SPA, close distances (structural order)
between residues 2−7 are characteristic of the transition
between states 1 (pink in Figure 2A) and 3 (purple in Figure
2A). Similarly, close distances in residues 22−27 and 32−37 are
characteristic hallmarks of state 2 (blue), which is also
determined by long distances (disorder) in the range 11−17.
It is noteworthy that states 2 and 3 in this system are distinctively
different from the other two systems. Thus, gradient-based
analysis of learned states was able to pinpoint similar
conformational events as the ones captured by NMR.Moreover,
regions 22−27 are neighboring the salt bridges between 22 and
28 and 23−28, which are relevant to the conformational
transition, oligomerization, and toxicity of Aβ42,68,69 as
pinpointed in the Intramolecular interactions of Aβ42 section.
Finally, we assessed the fibril formation of N-Met-Aβ42 using

the well-known thioflavin T (ThT) fluorometric assay with and
without the small molecules. We found that neither TMP nor
SPA seemed to significantly reduce the N-Met-Aβ42 fibril
formation rates, as observed by other groups.78 This is in
contrast with HFIP, which is a known solubilizing agent of Aβ42
and a crude membrane mimetic59 (Figure S31). In fact, a change
in the CD spectrum was observed in the presence of HFIP and
either TMP or SPA (Figures 5A,E and S28).

■ DISCUSSION
Alzheimer’s disease drug candidate TMP and its metabolite SPA
are thought to modify the conformational dynamics of the Aβ42
peptide and decrease its propensity to form toxic oligomers.33,34

The conformational diversity of Aβ42 has been previously
explored by exploiting the variational approach to Markov
processes in VAMPnets16 to construct Markov state models
(MSMs), to better capture the slowest processes in MD
simulations.17,67 However, the exact mechanism of action of
TMP, and particularly SPA, on Aβ42 was still unclear. To fill this
gap, we first applied the variational approach to Markov
processes on adaptive sampling MD simulations using
VAMPnets,17 and then ran our newly developed comparative
Markov state analysis (CoVAMPnet) pipeline to (1) align the
learned conformational states across ensembles of different
MSMs, and (2) based on the learned VAMPnet gradients, to
characterize these states by the inter-residue distances. The
CoVAMPnet alignment method proved a powerful approach to
(i) quantitatively compare the different conformational states of
Aβ42, (ii) identify which states were preserved across different
systems, and (iii) identify which states were unique. The
CoVAMPnet gradient-based characterization of the learned
ensembles of Markov states utilizes the end-to-end differ-
entiability of the neural network-based MSMs, i.e., a property
that the conventional methods for MSM estimation lack. The
analysis of gradients allowed us to reason, at the molecular level,
which residues are responsible for the assignment to a specific
state obtained from the variational Markov state analysis. We
expect these newly developed methods, i.e., (i) the alignment of
ensembles of variational Markov state models across different
systems, and (ii) the gradient-based characterization of learned
states, to become valuable for studying the impact of small
molecules on the conformational dynamics of intrinsically
disordered proteins and peptides.79,80

The newly developed analyses were applied to MD
simulations of Aβ42. It is known that the sampling protocol
(namely, the force field, the length of the simulations, the
adaptive metrics, and the simulation method) can highly
influence the global results.81,82 This is largely due to the
intrinsically disordered nature of the Aβ42 peptide, which has a
rather shallow energy landscape with many energy minima
separated by small energy barriers.6,79 For this reason, the
conformational sampling of Aβ42 remains a challenge.81,82

Starting from a helix-rich Aβ42 structure, biased toward the
conformation in the membrane environment59,83 (PDB ID
1Z0Q), we identified the most suitable adaptive protocol to
simulate Aβ42, according to the secondary structure contents
expected in aqueous phase (dominated by coils and β-strands).
In this way, we sampled the conformations and transitions
occurring immediately after the release of Aβ42 from the
transmembrane region to the extracellular fluid. After
approximately 64 μs of adaptive MDs, the free Aβ42 diverged
substantially from the initial structure, increasing the total
amount of random coils and β-strands (as expected) while
decreasing the ratio of α-helices, and became closer to
experimental values and previous reports.59,66,84 We identified
two regions of Aβ42 that were more prone to form β-strands
(mainly residues 2−8, 17−20, and 30−41). The MSMs learned
from the variational Markov state analysis revealed that the most
populated state of Aβ42 is highly disordered and contains some
β-strands. This state is in equilibrium with two other states with
higher contents of α-helices, but still bearing mainly coils. These
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results are in good agreement with recent reports by Löhr et al.,
obtained from much longer simulation times (315 μs).17
The presence of TMP and SPA shifted Aβ42 toward more

structured conformations (less coils and higher content of α-
helices) and reduced the propensity of regions 2−8, 17−20, and
30−41 to form β-strands. This behavior is similar to what has
previously been reported for some aggregation inhibitors85−87

and is in contrast with some others.67 The variational Markov
state analysis showed that TMP and SPA induced a change in
the equilibrium distribution and interconversion rates of the
Aβ42 conformational states. SPA exerted a much stronger effect,
stabilizing new conformational states that were richer in α-
helices than in the other systems. Since β-strand structures lead
to the formation of β-sheets, the precursors that prompt the
oligomerization and fibrillation of Aβ,2,4,5 these results suggest
the potential of TMP and SPA to inhibit or delay both processes.
This can be particularly relevant if we consider previous studies
suggesting that oligomers may start by the formation of β-
hairpins made of β-strands of residues 16−24 and 28−35,88 and
that α-helices in regions 10−2184 or 17−2189 may prevent the
formation of higher oligomers and aggregation. While Aβ42 is
preserved in its monomeric form, it should not be harmful until
it is cleared from the brain, namely, through the binding to
apolipoprotein E (ApoE).90−92 Our simulations suggest that
TMP and SPA may affect the conformational equilibrium of
Aβ42 in the brain and prolong its monomeric soluble state, thus
allowing to extend the effective time of the clearance
mechanisms. Due to their charged terminal moieties, both
TMP and SPA formed mainly electrostatic interactions with the
charged residues of Aβ42. These interactions were nonspecific
and short-lived, but they promoted the exposure of polar
residues (similar to a “solvation” effect), induced Aβ42 to be
more compact, and weakened intramolecular electrostatic
interactions (as previously observed70). Importantly, some of
the intramolecular salt bridges (E22-K28, D23-K28) considered
to promote the formation of β-sheets, aggregation, and
neurotoxicity of Aβ4268,69,88 were disrupted by the presence
of those small molecules. The difference between TMP and SPA
in terms of charge distribution (zwitterionic and doubly
negative, respectively) is likely the main factor responsible for
the overall stronger effects of SPA (see Table S3). The reasons
for the stronger stabilization of α-helices by SPA are not clear.
However, it may be due to competition of the densely charged
ligand with the water molecules, which may lead to preventing
their destabilizing action on the peptide, as previously described
for a series of ions at higher concentrations.93

The CoVAMPnet algorithm developed for identification of
structural features in the learned variational MSMs based on
network gradients proved useful. We were able to identify the
peptide regions with preferential order or disorder in the
different states and pinpoint major differences across the
different systems. Remarkably, this analysis showed good
agreement with the CSPs in the NMR spectra, correctly
predicting the peptide regions most affected by the presence of
SPA. These computational findings were in agreement with
previous studies involving Aβ, TMP, and SPA, namely: (i) the
unstructured nature of the peptide, (ii) shift of the Aβ42
conformations by those ligands toward more compact
structures, (iii) reduction of the β-strand propensity, and (iv)
nonspecific interactions with charged residues.33−35 Reports
also have shown that both small molecules can interact with the
soluble Aβ40 or Aβ42, change their dominant conformation,
inhibit the formation of oligomers and fibrils, decrease the Aβ-

induced neuronal cell death,25,33,34 and have protective effects in
vivo.30

We applied several experimental biophysical techniques to
validate the computational results described above. Although
the experimental outcomes showed only amild influence of both
TMP and SPA on N-Met-Aβ42, several relevant effects were
observed (Figure 5E). FTIR revealed slight changes in
secondary structure upon the addition of TMP, suggesting
higher coil conformation propensity for the peptide. On the
other hand, NMR showed a stronger impact of SPA on the
1H−15N NMR spectral fingerprint of N-Met-Aβ42, indicating
either direct ligand−peptide interactions, subtle changes in
secondary structure, or both. Strikingly, these perturbations
were observed in the same peptide regions highlighted by our
network gradient analysis. TMP did not produce significant
CSPs. Altogether, these results suggest a stronger effect of SPA
on Aβ42 than TMP. Yet, the fibril formation kinetics of N-Met-
Aβ42 seemed unaffected by TMP or SPA.
The experimental results corroborated several computational

findings: (i) the intrinsically disordered Aβ42 interacts with
TMP or SPA molecules through many weak interactions, (ii)
these interactions induce conformational changes on the
peptide, (iii) SPA has stronger influence on Aβ42 than TMP,
and (iv) the regions affected could be predicted by the gradient
analysis of the learned state probabilities. On the other hand, not
all the predictions from our molecular modeling were confirmed
experimentally: (i) Aβ42 showed higher β-strand content
compared to the computational results, and (ii) TMP and
SPA did not change significantly the global secondary structure
propensities of Aβ42 and did not prevent fibril formation. The
differences in the time scales sampled by the simulations
(microseconds) and the experiments (minutes/hours) and the
peptide concentration effects may have contributed to this
discrepancy. Moreover, the membrane mimetic HFIP modu-
lated the impact of TMP and SPA on N-Met-Aβ42, which may
deserve further investigation. An extended discussion of these
phenomena is provided in Supplementary Note 10. In further
works, the development of specif ic binders able to stabilize α-
helices in the regions of Aβ42mentioned above could be a better
approach for designing drugs targeting the neurotoxic
oligomerization of Aβ. The interaction of TMP and SPA with
other proteins participating in the amyloid cascade,94 which has
been demonstrated in the case of ApoE (especially ApoE4),70,95

should also be considered and evaluated in future studies.
Particularly, we have recently shown the strong impact of TMP
and SPA on ApoE4, shifting its structure and properties toward
those of ApoE3 and significantly reducing its aggregation.70 The
observation of significant effects of TMP and SPA on ApoE4,
but weaker ones on Aβ, is also important in the context of a
recently published paper reporting the existence of five subtypes
of AD.96 All subtypes showed a higher prevalence of the APOE
e4 genotype, while only selected ones are characterized by
modified levels of Aβ. In the future, it will be interesting to relate
this information to the data collected within phase 3 of clinical
trials, which will reveal the efficacy of TMP on the different
subtypes.
In summary, in this work, we introduced CoVAMPnet to

compare and interpret learned MSMs across different systems.
CoVAMPnet is composed of two methods: (i) the alignment of
Markov state models and (ii) characterization of learned
conformational states based on network gradients. The
CoVAMPnet approach can be applied to study and compare
any related molecular systems and extract valuable information.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00182
JACS Au 2024, 4, 2228−2245

2240

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00182/suppl_file/au4c00182_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00182/suppl_file/au4c00182_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00182?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


It can be especially useful to study the impact of small molecules
on intrinsically disordered proteins and peptides, whose
quantitative analysis can be extremely difficult. Furthermore,
we applied CoVAMPnet to study molecular effects of potential
anti-Alzheimer’s drugs on hallmark peptide Aβ42. Our
computational results suggested that TMP, and particularly
SPA, in short dynamic time windows can stabilize structured
helical conformations of Aβ42, potentially preventing its
oligomerization. In vitro validation confirmed the stronger
impact of SPA on Aβ42 and the peptide regions affected by this
molecule. However, in long time ranges, the global secondary
structure was not significantly modified, neither was the Aβ42
aggregation propensity under the experimental conditions. This
suggests the potential existence of additional mechanisms, such
as the suppression of ApoE4 aggregation,81 contributing to the
mode of action and the clinical effects of TMP/SPA in AD
besides the conformational shift of Aβ42.
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