BABALOVA, Lucia, Marian GRENDAR, Egon KURCA, Stefan SIVAK, Ema KANTOROVA, Katarina MIKULOVA, Pavel STASTNY, Pavel FASKO, Kristina SZABOOVA, Peter KUBATKA, Slavomir NOSAL, Robert MIKULÍK and Vladimir NOSAL. Forecasting extremely high ischemic stroke incidence using meteorological time serie. Plos one. San Francisco: Public Library of Science, 2024, vol. 19, No 9, p. 1-26. ISSN 1932-6203. Available from: https://dx.doi.org/10.1371/journal.pone.0310018.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Forecasting extremely high ischemic stroke incidence using meteorological time serie
Authors BABALOVA, Lucia, Marian GRENDAR, Egon KURCA, Stefan SIVAK, Ema KANTOROVA, Katarina MIKULOVA, Pavel STASTNY, Pavel FASKO, Kristina SZABOOVA, Peter KUBATKA, Slavomir NOSAL, Robert MIKULÍK (203 Czech Republic, belonging to the institution) and Vladimir NOSAL.
Edition Plos one, San Francisco, Public Library of Science, 2024, 1932-6203.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 30210 Clinical neurology
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 3.700 in 2022
Organization unit Faculty of Medicine
Doi http://dx.doi.org/10.1371/journal.pone.0310018
UT WoS 001310339200002
Keywords in English ischemic stroke; forecasting; meteorological time serie
Tags 14110127, rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Tereza Miškechová, učo 341652. Changed: 1/10/2024 10:54.
Abstract
Motivation The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes.Methods Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method.Results For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy.Conclusions The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.
PrintDisplayed: 8/10/2024 21:24