J 2024

Semiclassical Moser–Trudinger inequalities

ARORA, Rakesh, Phan Thanh NAM and Phuoc-Tai NGUYEN

Basic information

Original name

Semiclassical Moser–Trudinger inequalities

Authors

ARORA, Rakesh, Phan Thanh NAM and Phuoc-Tai NGUYEN (704 Viet Nam, belonging to the institution)

Edition

Transactions of the American Mathematical Society, American Mathematical Society, 2024, 0002-9947

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 1.300 in 2022

Organization unit

Faculty of Science

UT WoS

001188004400001

Keywords in English

Moser-Trudinger inequalities; semiclassical approximation; Schrödinger operators

Tags

Tags

International impact, Reviewed
Změněno: 7/10/2024 11:05, Mgr. Marie Šípková, DiS.

Abstract

V originále

We extend the Moser–Trudinger inequality of one function to systems of orthogonal functions. Our results are asymptotically sharp when applied to the collective behavior of eigenfunctions of Schrödinger operators on bounded domains.

Links

GA22-17403S, research and development project
Name: Nelineární Schrödingerovy rovnice a systémy se singulárním potenciálem (Acronym: NSESSP)
Investor: Czech Science Foundation