MUNI ICS

Machine Learning in Intrusion Detection: An Operational Perspective

RNDr. Martin Husák, Ph.D.¹ (husakm@ics.muni.cz) Darshan Manoj² (dmanoj@usc.edu) Priyanka Kumar³ (kumar_p@utpb.edu) ¹ Masaryk University, Czech Republic ² University of Southern California, CA, USA ³ The University of Texas Permian Basin, TX, USA October 28, 2024

Background

RDNr. Martin Husák, Ph.D.

- Researcher at Institute of Computer Science, Masaryk University, Czech Republic
- Member of Masaryk University's incident response team CSIRT-MU (https://csirt.muni.cz/)
- Recently also visiting researcher at The Cyber Center for Security and Analytics, The University of Texas at San Antonio, USA.

Paper background

 This research was inspired by discussions with machine learning experts (co-authors) and cybersecurity practitioners (namely members of CSIRT-MU)

Introduction

Motivation

- Machine learning is used everywhere, with promising results
- Intrusion detection is a prominent application of ML in cybersecurity research (ML-IDS for short)

Specific Problems

- There are thousands of research publications on ML-IDS...
 - ... but only a very few open source prototypes!
- The topic is frequent in a start-up scene...
 - ... but how many usable commercial products exist?

Surveying ML-IDS

Literature Survey

- Hundreds or thousands of results, depending on keywords (* *learning*) and library (Google Scholar, IEEExplore, ACM DL)
- Looking up survey papers does not help, either -
 - over 30 were published in 2023 only!

Typical ML-IDS paper

- Motivated by recent attacks, but uses obsolete datasets
- Input is dataset CSV, not PCAPs of network flows
- Claim accuracy of more than 99 %, binary classification only
- No implementation nor attempt to deploy in live traffic

Surveying ML-IDS

Commercial products

- Darktrace, ExtraHop, Vektra, ...
- Interesting, but unclear how they work, mixed reviews

Open-source example - StratosphereLinuxIPS

- https://github.com/stratosphereips
- Highly recommended work from operational perspective

GitHub survey

Most of the other repositories are just simple experiments

Research Repository Count as per Github

M. Husák • Machine Learning in Intrusion Detection: An Operational Perspective • October 28, 2024 5/15

Criticism of ML-based Intrusion Detection

- R. Sommer and V. Paxson, "Outside the closed world: On using machine learning for network intrusion detection," in 2010 IEEE Symposium on Security and Privacy, 2010.
- G. Apruzzese et al., "On the effectiveness of machine and deep learning for cyber security," in 2018 10th International Conference on Cyber Conflict, 2018.
- D. Arp et al., "Dos and don'ts of machine learning in computer security," in 31st USENIX Security Symposium, 2022.
- D. Arp et al., "Lessons learned on machine learning for computer security," IEEE Security & Privacy, 2023.
- F. Ceschin et al., "Machine learning (in) security: A stream of problems," Digital Threats: Research and Practice, 2023.
- G. Apruzzese, P. Laskov, and J. Schneider, "Sok: Pragmatic assessment of machine learning for network intrusion detection," 2023.
- G. Apruzzese et al., "The role of machine learning in cybersecurity," Digital Threats: Research and Practice, 2023.
- A. Corsini and S. J. Yang, "Are existing out-of-distribution techniques suitable for network intrusion detection?" 2023.

What is the use case for ML-based IDS?

Various environments call for various solutions

- Huge amounts of data in backbone networks and clouds
- Low computational capacity of IoT networks
- Rigidity of OT vs. variability of generic IT
- Let's consider IDS in a campus/enterprise network
- Intrusion detection vs. anomaly detection

What data are on the input?

- Most often a dataset with CSV input is used
- How to obtain the feature vectors?
- Raw data -> input data is a challenging problem
- Raw packets/PCAPs x NetFlow/IPFIX and similar aggregates

Are they data processed in batch or in a stream?

- Huge design issue when implementing an IDS
- Stream allows for faster detection, if feature set and method allows for it
- Batch is still relevant, e.g., in centralized analysis of data collected by distributed probes

What features to use?

- Existing datasets tens of different features
 - Not all of them are available in common formats like NetFlow/IPFIX (e.g., *ct_srv_src/dst* in UNSW-NB15)
 - Some cannot be obtained any more (encryption) or require collaboration with end hosts (e.g., *logged_in* in KDD'99)
- Creating a custom packet parser should be well justified
 - Compare to the time and effort spent on developing precise NetFlow probes

Which model (and optimizations) to choose?

- According to related work, there are multiple options achieving accuracy and precision over 99 %
- The final selection will depend on other factors than accuracy
 - computational performance, easy of use, configurability, ...

How to train the model and how transferable it is?

- Ideally a combination of datasets and background traffic
 - Training on dataset only will produce FPs in operations
 - Custom data will lack ground truth
- Potential solution Siamese neural networks¹

¹M. Pawlicki, R. Kozik, and M. Chora's, "Improving siamese neural networks with border extraction sampling for the use in real-time network intrusion detection," in 2023 International Joint Conference on Neural Networks (IJCNN), 2023.

How often to retrain the model and who should do it?

- Conceptual drift a trained model will lose accuracy over time
- Re-training the models is recommended, but how often?
- Is an average IDS operator able to re-train the model correctly?
- Can we offload the work to experts?

What is the computational performance of ML-IDS?

- Unaddressed question in most of the works
- If addressed, then either only training time or time to process the whole dataset (in batch) in seconds
- Training time is usually less important (not executed often)
- Imagine a stream-based ML-IDS, what is its throughput in Gbps?

How are the alerts raised, how do they look like, and how many are there?

- Unaddressed in related works, which ends at classification
- Extreme risk of information overload for the operator
- For example, SLIPS implements a plethora of heuristics and thresholds to trigger optimal amount of alerts

What options does a user have to configure or modify the IDS?

- Re-training the whole model is impractical
- Advantage of ensemble-based solutions (plug-in models)
- Workflow automation not all alerts should trigger an automated response

Discussion

Is it really better than traditional IDS?

- In terms of accuracy and precision yes, but other aspects?
- Beware of trade-offs aren't we losing key features?

How would a good ML-IDS look like?

- Takes NetFlow or other standard as an input
- Capable of processing large volumes of data
- Distinguishes between different types of attacks (e.g., multi-label classification or ensemble of specialized models)
- Pre-trained models provided by vendors or community?
- Smooth blending of pre-trained models and background traffic
- Explainable AI is not exactly what we need

Discussion

Is it really worth it?

- Pet and Cattle analogy in DevOps
- Are you willing to spend time and effort to make it work and oversee it all the time? ML-IDS is your pet
- Can you deploy it all over your network in the blink of an eye and let it run with minimal interventions? ML-IDS is not the cattle yet

Are there any alternative approaches?

- Directly applying ML is not the only way
- Al-assited generation of IDS signatures nad rules²
- Potential for faster adoption and persuasion of users into ML

²M. Zipperle, Y. Zhang, E. Chang, and T. Dillon, "PARGMF: A provenance-enabled automated rule generation and matching framework with multi-level attack description model," Journal of Information Security and Applications, 2024.

Conclusions

Conclusion

- Machine learning in intrusion detection is a hyped topic
- ML performance is not everything actually, it is only a small part of any usable ML-IDS
- Researchers spent enormous efforts on optimizing only one aspect, there is a lot more to figure out and implement

Future work

- Proper surveys, field trials of available implementations, ...
- Steering the research and development community
- Doing the hard work of actually implementing ML-IDS :)

M A S A R Y K U N I V E R S I T Y