J 2024

A collateral circulation in ischemic stroke accelerates recanalization due to lower clot compaction

THALEROVÁ, Sandra; Andrea VÍTEČKOVÁ WÜNSCHOVÁ; Patrícia KITTOVÁ; Lucie VAŠÁTKOVÁ; Michaela PEŠKOVÁ et. al.

Basic information

Original name

A collateral circulation in ischemic stroke accelerates recanalization due to lower clot compaction

Authors

THALEROVÁ, Sandra (203 Czech Republic, belonging to the institution); Andrea VÍTEČKOVÁ WÜNSCHOVÁ (203 Czech Republic, belonging to the institution); Patrícia KITTOVÁ (703 Slovakia, belonging to the institution); Lucie VAŠÁTKOVÁ (203 Czech Republic); Michaela PEŠKOVÁ (203 Czech Republic, belonging to the institution); Ondřej VOLNÝ (203 Czech Republic); Anna MAC GILLAVRY DANYLEVSKA (804 Ukraine, belonging to the institution); Jan VÍTEČEK (203 Czech Republic); Lukáš KUBALA (203 Czech Republic) and Robert MIKULÍK (203 Czech Republic)

Edition

PLOS ONE, SAN FRANCISCO, PUBLIC LIBRARY SCIENCE, 2024, 1932-6203

Other information

Language

English

Type of outcome

Article in a journal

Field of Study

30210 Clinical neurology

Country of publisher

United States of America

Confidentiality degree

is not subject to a state or trade secret

Impact factor

Impact factor: 2.900 in 2023

RIV identification code

RIV/00216224:14110/24:00137823

Organization unit

Faculty of Medicine

UT WoS

001360846500006

EID Scopus

2-s2.0-85209911131

Keywords in English

clot; collateral; in vitro; Recanalization; Stroke

Tags

International impact, Reviewed
Changed: 23/1/2025 12:18, Mgr. Tereza Miškechová

Abstract

V originále

Collaterals improve recanalization in acute ischemic stroke patients treated with intravenous thrombolysis, but the mechanisms are poorly understood. To investigate it, an in vitro flow model of the middle cerebral artery was developed with or without collaterals. An occlusion was achieved using human blood clots. Recanalization time, thrombolysis (clot length decrease and red blood cell (RBC) release), pressure gradient across the clot and clot compaction were measured. Results showed that with or without collateral alteplase-treated RBC dominant clots showed recanalization time 98±23 min vs 130±35 min (difference 32 min, 95% CI -6-58 min), relative clot reduction 31.8±14.9% vs 30.3±13.2% (difference 1.5%, 95% CI 10.4–13.4%) and RBC release 0.30±0.07 vs 0.27±0.09 (difference 0.03, 95% CI 0.04–0.10). Similar results were observed with fibrin-dominant clots. In RBC dominant clots, the presence vs absence of collateral caused different pressure gradients across the clot 0.41±0.09 vs 0.70±0.09 mmHg (difference 0.29 mmHg, 95% CI -0.17–0.41 mmHg), and caused the reduction of initial clot compaction by 5%. These findings align with observations in patients, where collaterals shortened recanalization time. However, collaterals did not increase thrombolysis. Instead, they decreased the pressure gradient across the clot, resulting in less clot compaction and easier distal displacement of the clot.

Links

MUNI/A/1564/2023, interní kód MU
Name: Využití analytických metod a modelových systémů a ke studiu biochemické podstaty vybraných patologických procesů
Investor: Masaryk University, Use of analytical methods and model systems to study the biochemical nature of selected pathological processes
NU22-08-00124, research and development project
Name: Modelování toku v intrakraniálních cévách ve vztahu ke změnám endotelu a rozvoji intrakraniálních aneuryzmat
Investor: Ministry of Health of the CR, Subprogram 1 - standard
NU23-08-00499, research and development project
Name: Zlepšení účinnosti a bezpečnosti rekanalizace mozkového infarktu pomocí duální trombolytické terapie
Investor: Ministry of Health of the CR, Subprogram 1 - standard
NW24-08-00064, research and development project
Name: Pokročilé testování nových trombolytik: Inovativní model využívající přesnou strukturu trombu a jeho interakci s cévní stěnou při simulovaných patofyziologických podmínkách
Investor: Ministry of Health of the CR, Advancing New Thrombolytic Testing: An Innovative Model Harnessing Precise Clot Structure and its Interaction with Vessel Wall under Simulated Pathophysiological Conditions, Subprogram 1 - standard