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A B S T R A C T

Enzymes offer a more environmentally friendly and low-impact solution to conventional chemistry, but they 
often require additional engineering for their application in industrial settings, an endeavour that is challenging 
and laborious. To address this issue, the power of machine learning can be harnessed to produce predictive 
models that enable the in silico study and engineering of improved enzymatic properties. Such machine learning 
models, however, require the conversion of the complex biological information to a numerical input, also called 
protein representations. These inputs demand special attention to ensure the training of accurate and precise 
models, and, in this review, we therefore examine the critical step of encoding protein information to numeric 
representations for use in machine learning. We selected the most important approaches for encoding the three 
distinct biological protein representations — primary sequence, 3D structure, and dynamics — to explore their 
requirements for employment and inductive biases. Combined representations of proteins and substrates are also 
introduced as emergent tools in biocatalysis. We propose the division of fixed representations, a collection of 
rule-based encoding strategies, and learned representations extracted from the latent spaces of large neural 
networks. To select the most suitable protein representation, we propose two main factors to consider. The first 
one is the model setup, which is influenced by the size of the training dataset and the choice of architecture. The 
second factor is the model objectives such as consideration about the assayed property, the difference between 
wild-type models and mutant predictors, and requirements for explainability. This review is aimed at serving as a 
source of information and guidance for properly representing enzymes in future machine learning models for 
biocatalysis.

1. Introduction

In the current time of climate change and increasing resource 
depletion, enzyme technology has emerged as a more environmentally 
friendly and potentially low-impact approach to industrial processes 
traditionally mediated by conventional chemistry (Buller et al., 2023; 
Hauer, 2020; Radley et al., 2023; Reetz et al., 2024; Sheldon and 
Woodley, 2018; Wu et al., 2021). However, despite the advancements in 
the engineering of enzymes towards improved activity, substrate 

specificity, enantioselectivity, and thermostability (Galanie et al., 2020; 
Qu et al., 2020; Renata et al., 2015), enhancing multiple enzyme 
properties such as activity and stability simultaneously is still a difficult 
endeavour (Acevedo-Rocha et al., 2018; Calzadiaz-Ramirez et al., 2020; 
Stimple et al., 2020; Tokuriki et al., 2012). The prediction and control of 
substrate specificity and regioselectivity — crucial properties for in-
dustrial purposes — are also often challenging (Harding-Larsen et al., 
2024; Yang et al., 2018a). In this context, machine learning (ML) algo-
rithms have emerged as powerful tools, capable of modelling complex 
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relationships within protein and enzyme datasets. In biocatalysis, ML 
has facilitated the study and engineering of proteins and led to novel 
insights for improving enzymatic processes (Kouba et al., 2023; Markus 
et al., 2023; Mazurenko et al., 2020; Yang et al., 2019). Notable exam-
ples include activity and substrate specificity predictors (Robinson et al., 
2020), deep learning (DL) models for the estimation of metabolic 
enzyme activities (Li et al., 2022) and for functional predictions of en-
zymes (Gligorijević et al., 2021), models for protein solubility pre-
dictions (Yang et al., 2016, 2021b), and numerous approaches for 
predicting protein stability changes upon mutagenesis (Blaabjerg et al., 
2023; Folkman et al., 2016; Iqbal et al., 2022; Li et al., 2020; Teng et al., 
2010). ML has also enabled a more efficient multiparametric optimiza-
tion strategy (Kunka et al., 2023; Ma et al., 2021), facilitated de novo 
enzyme design (Yeh et al., 2023), and prediction of non-additive 
epistatic effects (Cadet et al., 2018, 2022; Li et al., 2021). Finally, ML 
has been combined with DE in the aptly termed “machine learning- 
assisted” directed evolution (MLDE), where it has significantly improved 
the exploration of the sequence-function landscape in the search for 
enhanced variants (Wittmann et al., 2021b; Wu et al., 2019; Xu et al., 
2020; Yang et al., 2019, 2024).

Traditionally, the focus within ML research has often been to refine 
the algorithms, whereas data representation is treated as a secondary 
concern. This viewpoint posits that given sufficient data and computa-
tional resources, ML models should inherently discern and leverage the 
most salient features relevant to the task at hand. However, this view 
overlooks the challenge of producing such large protein datasets of high 
quality (i.e., reproducibility) and neglects the critical role of data rep-
resentation in enhancing or limiting a model’s ability to learn (Bengio 
et al., 2013; Iuchi et al., 2021). Our work addresses the topic of protein 
representations as a critical step for uniting biology and data science. In 
biology, a protein is commonly represented by its primary or tertiary 
structure through categorical or symbolic information, while ML tradi-
tionally requires numeric inputs in the forms of vectors, matrices, and 
tensors. This poses an exciting task of representing proteins in a manner 
that is both informative for ML models and reflective of the underlying 
biological properties.

Interestingly, the concept of inductive biases introduces a nuanced 
understanding of how ML models approach learning tasks. Inductive 
biases refer to the assumptions made by a model about the patterns it 
expects to find in the data before any data is indeed observed. They 
guide the ML algorithm towards certain solutions over others, effec-
tively shaping the hypothesis space that the model explores. Without 
any inductive biases, models struggle to generalise effectively to new 
data (Baxter, 2000). Selecting the right inductive biases — through the 
strategic representation of data — can significantly facilitate the 
learning process, enabling models to learn more efficiently and effec-
tively from fewer examples (Baxter, 2000).

In the context of biocatalysis, these inductive biases arise either 
manually or by representation learning, and the choices made during the 
encoding process strongly affect the information captured in the repre-
sentations. In this review, we investigate the methodologies for protein 
representation utilizing the protein sequence, structure, or dynamics. 
We also analyse the assumptions of the inductive biases that are 
captured in the different representation techniques. We conclude with a 
discussion about different factors influencing the choice of protein 
representation.

2. Sequence representations

A simple description of a protein is the one-dimensional sequence 
representation of the molecular structure using an alphabet of 20 amino 
acids. This leads to an alphanumeric expression of the biomolecular 
components to easily differentiate between proteins. While simple, the 
string of single-letter residue codes contains a vast amount of informa-
tion. The protein sequence can reflect the physicochemical properties of 
every amino acid, and, complemented with the analysis of similar 

sequences, may offer insights into the evolutionary trace of the protein. 
Sequences are intrinsically linked to 3D structures and functional 
properties, making them a rich source of information critical for protein 
design. However, the development of ML models for predicting protein 
functions requires precise feature extraction from those sequences. A 
spectrum of methodologies to identify optimal features are available, 
ranging from simple to complex ones. This section outlines the evolution 
of feature extraction techniques, emphasizing the transition from 
elementary assumptions to sophisticated models. Finally, we also 
discuss a mixed representation where structural insights are used to 
influence the sequence representation.

2.1. Fixed sequence representations

The methods for capturing biological information stored in the 
sequence representation are varied, often focusing on different elements 
of this information. One category of methods is the so-called “fixed” 
representations, a collection of rule-based approaches to convert be-
tween the protein sequence and numerical vectors by incorporating 
specific parts of the amino acid characteristics (Fig. 1) (Markus et al., 
2023). The simplest of all is the one-hot encoding (OHE) technique, a 
prevalent method in ML for transforming categorical data into a binary 
format. Here, each residue is represented as a vector vi = (0,0, …,1, …,0) 
with ‘1’ placed at the ith index corresponding to its lettering, creating a 
binary 20 × n matrix with a single non-zero entry in each column, where 
n is the length of the protein sequence. Although OHE offers no protein 
information aside from the amino acid identities, it is used extensively as 
a fast and effective method for converting biological information into 
numerical vectors (Elabd et al., 2020; Goldman et al., 2022; Greenhalgh 
et al., 2021; Hsu et al., 2022; Michael et al., 2023; Raimondi et al., 2019; 
Wittmann et al., 2021b; Yang et al., 2018a). However, the sparse and 
high-dimensional nature of OHE can lead to computational in-
efficiencies, particularly in models dealing with long protein sequences. 
Moreover, many ML algorithms require the input of a fixed size 
throughout their training and inference, necessitating an additional data 
pre-treatment step in OHE, e.g., trimming long sequences or extending 
short ones with zeros.

The simple nature and lack of inductive bias prevent OHE from 
capturing any relationships between amino acids before the training. 
Property-based encoding strategies emerge as a potential solution to 
instruct ML algorithms about the physicochemical nature of the se-
quences, either global protein descriptors or those at the residue level. 
The former captures the behavior of the entire protein chain through 
properties such as solubility or radius of gyration, while the latter 
instead enables the encoding of each amino acid using a set of properties 
such as charge, hydrophobicity, volume, or pKa, imposing biases to-
wards certain residue attributes and allowing the model to discern the 
similarities and differences between two residues. Various sets of 
physicochemical residue descriptors exist, such as the large database of 
amino acid indices, and AAindex (Kawashima and Kanehisa, 2000), 
containing over 500 matrices for encoding sequence information. Such a 
set of indices for charge, polarity, hydrophobicity, average accessible 
surface area, and side chain volume was used to model and predict the 
donor specificity of fold A glycosyltransferases by Taujale et al. (Taujale 
et al., 2020). Another example is the recent study by Xu et al., where the 
authors employ physicochemical properties such as volume, hydro-
phobicity, and π-π interactions to model and improve enantioselectivity 
of carboxylesterase AcEst1 from Acinetobacter sp. JNU9335 (Xu et al., 
2024).

Instead of manually choosing between the many similar indices, the 
inherent patterns of the physicochemical properties can be extracted 
through their principal components, such as the Vectors of Hydropho-
bic, Steric, and Electronic properties (VSHE) (Mei et al., 2005), z-scales 
(Hellberg et al., 1987; Jonsson et al., 1989; Sandberg et al., 1998; Wold 
et al., 2011), the DL-based amino acid parameter representations by 
Meiler et al. (Meiler et al., 2001), or the five factors described by Atchley 
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et al. (Atchley et al., 2005). Using these principal components enables 
the incorporation of a wide range of different residue properties without 
drastically increasing the dimensionality of the vector representation 
due to the principal components containing information from multiple 
physicochemical properties. An example is Factor III by Atchley et al. 
which encompasses bulkiness, residue volume, average volume of a 
buried residue, side chain volume, and molecular weight (Atchley et al., 
2005). Several ML models have employed these dimension-reduced 
physicochemical representations for different enzymes, including the 
thiolase activity and substrate specificity predictors (Robinson et al., 
2020), the Sortase A mutagenesis model for ML-guided directed evolu-
tion (Saito et al., 2021), and DeepTM, a DL-based model for predicting 
the melting temperatures of proteins such as PET plastic-degrading en-
zymes (Li et al., 2023a). Nevertheless, a potential issue with this 
approach is the “black box”-like nature, complicating the process of 
interpreting the results and discerning the actual residue property con-
tributions when examining model feature importance.

Aside from introducing residue information and imposing an 
inductive bias to the protein representation through physicochemical 
properties, the encoding method can be based on the evolutionary in-
formation contained in the sequence. These biases force the model to 
learn evolutionary important patterns. One such technique, the BLOck 
SUbstitution Matrix (BLOSUM) encoding, is generated from alignments 
of protein sequences and focuses on evolutionary changes and conser-
vation (Henikoff and Henikoff, 1992; Mount, 2008). Based on the fre-
quency of amino acid substitutions in these alignments, each entry in a 
BLOSUM matrix represents the likelihood of substitution between amino 
acids, calculated based on observed substitutions in protein families. In 
BLOSUM encoding, each amino acid is replaced by a vector derived from 
the corresponding row in the BLOSUM matrix, vi = (xA,xG,…,xY) where, 
for example, xA denotes the likelihood score that the ith residue is 
substituted with alanine, thus enabling the representation to capture the 
evolutionary history and functional similarities between amino acids. 
We employed this sequence representation in our model for predicting 
glycosyltransferase activity specificity (GASP), which allowed the model 
to use the evolutionary information to discern the wide array of different 
glycosyltransferases (Harding-Larsen et al., 2024). The evolutionary 
information can also be captured using a Position Specific Scoring Ma-
trix (PSSM), a method that uses a Multiple Sequence Alignment (MSA) of 
a set of proteins to quantify the likelihood pij that a residue at a specific 

position j mutates into the ith amino acid. These matrices can be con-
structed using a sequence similarity program such as PSI-BLAST 
(Altschul et al., 1997).

Finally, a fourth approach to extracting biological information from 
the protein sequences is to exploit the relationship between the primary 
sequence and the 3D structure. Secondary structure elements have long 
been possible to estimate directly from primary sequence (Yang et al., 
2018b), and also structural properties such as Solvent Accessible Surface 
Area (SASA) (Lee and Richards, 1971) and the Half Sphere Exposure 
(HSE) (Hamelryck, 2005) can be predicted from sequence alone (Cheng 
et al., 2005; Fraczkiewicz and Braun, 1998; Heffernan et al., 2017; Song 
et al., 2008). Sequence-based structural properties have been used in 
tandem with metabolic network properties, reaction thermodynamics, 
and assay conditions to predict WT metabolic enzyme turnover numbers 
(Heckmann et al., 2018, 2020), exhibiting significant importance 
compared to the other model features. Sequence-based structural 
properties were also applied in the previously mentioned DeepTM (Li 
et al., 2023a) algorithm, again as part of a larger feature set.

Lastly, it is important to note that the development of AlphaFold2 
(Jumper et al., 2021) and similar sequence-to-structure tools (Ahdritz 
et al., 2024; Baek et al., 2021; Lin et al., 2023) has blurred the boundary 
between sequence- and structure-based protein representations, as these 
tools are capable of predicting the entire 3D structure using only the 
sequence. This ambiguity is necessary to consider, e.g., for fair com-
parison of sequence-only encoding techniques and algorithms.

2.2. Representation learning

An alternative to manually extracting features from sequence infor-
mation is to learn features or representations of sequences through 
machine learning from data (Iuchi et al., 2021; Sinai and Kelsic, 2020). 
The key idea is to learn general representations through a machine 
model by training on large data sets of unlabeled protein sequences. 
Such representation, embeddings, can be defined as numerical vectors 
learned by neural networks to represent the input data. Importantly, 
these embeddings often preserve the intrinsic properties and relation-
ships within the data. The obtained representations of the pre-trained 
embedding model are then used to train a task-specific (surrogate) 
model, requiring less labeled data. The following sections will describe 
two common approaches for learning sequence embeddings (Fig. 2).

Fig. 1. Fixed representations for encoding the protein sequence. OHE (left) is the simplest method and only uses the amino acid identity. Physicochemical properties 
(middle left) instead capture the nature of the amino acids by explicitly using their properties as features. Matrices such as the BLOSUM encoding introduce 
evolutionary information to the protein representation (middle-right). Lastly, the sequence can also be used to calculate structural properties such as SASA (right).
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2.2.1. Variational autoencoders
Variational Autoencoders (VAEs), introduced by Kingma and Well-

ing in 2013 (Kingma and Welling, 2013), offer a framework for training 
DL models that learn meaningful representations by maximizing the 
probability of reconstructing data after passing it through an informa-
tional bottleneck – a so-called latent space. In summary, VAEs learns to 
condense the input data down to this latent space, utilizing the 
“encoder”, and then reconstruct the input from the condensed repre-
sentation with the “decoder”. This process involves a balance between 
accurately reconstructing the data while enforcing a structured latent 
space, as this facilitates the VAE’s ability to generate new data samples 
that resemble the original inputs. This allows VAEs to capture essential 
features of the data efficiently, as this approach prioritizes capturing the 
important parts of the data in the latent space. The utility of VAEs is 
particularly evident in handling high-dimensional and sparse data, such 
as large sets of one-hot encoded (OHE) protein sequences, enabling the 
extraction of compact and meaningful representations (Detlefsen et al., 
2022).

Expanding on this, the foundation of VAEs is centred around the 
transformation of input data (e.g. OHE sequences), x, into a latent dis-
tribution, z, through an encoder, qθ(z|x). Because the latent distribution 
is smaller than the original data distribution, it constitutes an informa-
tional bottleneck that forces the model to encode only essential infor-
mation. The latent distribution, typically Gaussian, is characterized by 
parameters (mean and variance) derived from the input by a neural 
network. Constraining the projection of sequences onto a simple known 
distribution encourages that sequences will not be assigned to arbitrary 
regions in latent space, but instead occupy a particular region in that 
space. This leads to smoother latent space, which is beneficial for sam-
pling and encoding meaningful relations between sequences. The 
decoder of the VAE then attempts to reconstruct the input data from the 
latent variables, following the distribution pϕ(x|z). The objective of 
training a VAE is to maximize the evidence lower bound (ELBO) on the 
log-likelihood. The ELBO is often used as a loss function in variational 
inference models to estimate how well the model’s predictions match 
the actual data by approximating the likelihood of observing data after it 
has been projected to an embedding space. Thus, during training, the 
model is encouraged to facilitate the reconstruction task by maximizing 
the information content of the representations while constrained to a 
specific region of the latent space. Mathematically, the ELBO is 
expressed as: 

L (x; θ,ϕ) = Eqθ(z|x)
[
logpϕ(x|z)

]
− DKL(qθ(z|x)‖p(z) )

The first term in the ELBO represents the reconstruction loss, pro-
moting similarity between the decoded samples and the original inputs, 
and the second term is the Kullback-Leibler (KL) divergence, serving as a 
regularization term ensuring the latent space is both continuous and 

constrained to a known distribution, enabling efficient data represen-
tation and interpolation (Tschannen et al., 2018; Vincent et al., 2008).

In the context of protein sequences, VAEs leverage the manifold 
hypothesis, which suggests that high-dimensional data can be effectively 
modeled on a low-dimensional, non-linear manifold (Vincent et al., 
2008). VAEs achieve two critical objectives: (i) reducing the dimen-
sionality and sparsity to mitigate the curse of high dimensionality 
(Bellman, 1966) and (ii) incorporating domain-specific knowledge 
through the model architecture and sequence preprocessing and 
sequence alignment (Detlefsen et al., 2022). Choices made when 
building the architecture and constructing the MSA not only facilitate 
more efficient learning but also enhance the model’s ability to support 
transfer learning by introducing inductive biases that align with the tree 
topology of the evolutionary history underlying the protein family (Ding 
et al., 2019). For these among other reasons, latent variable models such 
as VAEs have seen widespread adoption for predicting the mutational 
effect on protein fitness and in MLDE. Notable examples are the muta-
tional effect predictor EVE by Frazer et al. (Frazer et al., 2021) or ap-
plications in MLDE studies conducted by Wittmann et al. (Wittmann 
et al., 2021a). Giessel et al. utilised VAEs to engineer therapeutic 
enzyme variants with improved stability and activity, showcasing the 
model’s ability to generate novel ornithine transcarbamylase sequences 
with enhanced therapeutic potential and marking a significant 
advancement for therapeutic enzyme engineering (Giessel et al., 2022). 
Hawkins-Hooker et al. successfully employed VAEs to generate novel 
functional variants of the luxA bacterial luciferase, demonstrating their 
capacity to explore protein sequence space and manipulate biophysical 
properties such as solubility, thereby presenting a valuable complement 
to traditional protein engineering methods (Hawkins-Hooker et al., 
2021). Kohout et al. leverage VAEs to design novel variants of hal-
oalkane dehalogenases for biocatalysis, demonstrating the applicability 
to generate sequences with stability and activity comparable to wild 
types while addressing challenges in maintaining protein solubility 
(Kohout et al., 2023). Finally, Hsu et al. highlighted the versatility of 
VAEs by augmenting evolutionary density scores extracted from the 
DeepSequence VAE model (Riesselman et al., 2018) with the simplistic 
OHE (Hsu et al., 2022). The augmentation approach achieved high 
performance across 19 different datasets — even in the case of models 
trained on as few as 42 data points.

2.2.2. Protein language models
Another common method for generating protein sequence repre-

sentations is Protein Language Models (PLMs), which nowadays 
increasingly employ the Transformer architecture (Vaswani et al., 
2017). The Transformer, more specifically the Large Language Model 
(LLM) variant utilised by PLMs, is an ML architecture originally popu-
larized in the domain of natural language processing to learn general 

Fig. 2. Two common approaches for learning sequence embedding. Variational Autoencoders (left) are latent variable models that utilise an encoder-decoder setup 
to learn a latent space embedding, z. Protein Language Models (right) are also used to generate sequence representations but instead employ an attention mechanism 
that dynamically weighs the relevance of different parts of a protein and a Feedforward Neural Network (FFNN). A protein encoding can be obtained by averaging 
over the neural embeddings. The resulting representations from both techniques can then be used for making task-specific predictions.

D. Harding-Larsen et al.                                                                                                                                                                                                                       Biotechnology Advances 77 (2024) 108459 

4 



patterns of languages by predicting the missing words, intentionally 
removed from sentences, by their context. By training on a very large 
dataset, the model can recognise the intrinsic patterns, structures, and 
relationships between words and phrases, allowing it to predict the next 
word in a sentence (Minaee et al., 2024). Importantly, if trained on 
protein data, the model is able to learn the biologically-relevant patterns 
within the data. PLMs are trained on large protein sequence databases 
containing sequences sampled across different organisms. The training 
objective of PLMs is to reconstruct the sequence of a protein after it has 
been partially corrupted through the masked language modelling 
objective (Devlin et al., 2018). Like VAEs, PLMs can be used to extract 
latent representations of protein sequences by running the sequences 
through the trained model and averaging the final layer output over the 
sequence length (Rao et al., 2020). A major difference between PLMs 
and VAEs is the attention mechanism at the core of PLMs, which allows 
the network to build up complex representations that incorporate 
context from across sequences (Rives et al., 2021): 

Attention(Q,K,V) = softmax
(

QKT
̅̅̅̅̅
dk

√

)

V 

The attention mechanism used in Protein Language Models (PLMs) 
dynamically weighs the relevance of different parts of a protein 
sequence by calculating a weighted sum of values (V). The weights are 
determined by the compatibility of queries (Q) and keys (K), which is 
scaled by a constant, the square root of the dimension of the keys (dk) in 
the original transformer implementation (Vaswani et al., 2017), and 
normalised through a softmax function. The flexibility of the attention 
mechanism supposes the inductive bias that each amino acid in a 
sequence could influence every other amino acid in the sequence, 
regardless of their distance on the sequence. Thus, PLMs infer the rela-
tive importance of amino acids on the fly, based on contextual infor-
mation and patterns learned during training. Analysis of PLM 
representations has revealed that PLMs intrinsically learn biologically 
relevant features. For instance, their attention maps have been shown to 
bear a close resemblance to contact maps in proteins, indicating their 
capability to capture essential biological insights (Rives et al., 2021). 
PLM representations have demonstrated great flexibility in domain- 
specific tasks, such as function prediction, protein localization, and 
mutational effect prediction (Brandes et al., 2022; Elnaggar et al., 2021; 
Ferruz et al., 2022; Goldman et al., 2022; Rives et al., 2021; Thumuluri 
et al., 2022). PLMs offer a robust way to generate highly effective rep-
resentations for domain-specific applications, making them a popular 
choice when creating ML models for biocatalysis. Examples of PLMs for 
biocatalysis include the study by Yu et al. utilizing contrastive learning 
for the precise annotation of enzyme functions by Enzyme Commission 
(EC) numbers, outperforming conventional tools in accuracy and capa-
bility to annotate underexplored and mislabeled enzymes (Yu et al., 
2023). Hoffbauer and Strodel introduce TransMEP, a tool employing 
transfer learning from protein language models to accurately predict the 
effects of mutations on proteins, demonstrating the efficacy of 
leveraging pre-trained models like ESM-2 (Lin et al., 2023) for mutation 
effect prediction in protein engineering (Hoffbauer and Strodel, 2024). 
The pre-trained ESM-1b model (Rives et al., 2021) has also seen 
extensive use in biocatalysis, either directly employed as protein rep-
resentations for supervised tasks (Goldman et al., 2022; Hou et al., 2023; 
Wittmann et al., 2021b; Xu et al., 2022), or in the form of a fine-tuned 
task-specific encodings (Kroll et al., 2023a, 2023b).

2.2.3. Comparing VAEs with PLMs
Both PLM and VAE representations frequently rank as the state of the 

art in task-specific application benchmarks, such as mutational effect 
prediction (Livesey and Marsh, 2023) or MLDE studies (Wittmann et al., 
2021b). When comparing VAEs to PLMs for applications in protein en-
gineering, some general rules can be drawn. There are some indications 
that VAEs show greater performance for task-specific applications 

(Wittmann et al., 2021b). VAEs are also smaller than PLMs, which makes 
them faster at inference and easier to run without large computational 
resources. Furthermore, VAEs are superior during sampling, due to their 
ability to easily sample from the latent distribution by passing latent 
variables through the decoder. VAEs can be highly customized, for 
example, allowing the creation of latent variables with fewer dimensions 
to facilitate data visualization or fine-tuning (Detlefsen et al., 2022). On 
the other hand, VAEs must be trained individually for each protein 
family, whereas PLMs can be used across all protein families without 
further training, even generalizing beyond naturally observed proteins 
(Verkuil et al., 2022). Interestingly, nowadays ML developers are 
exploring the possibility of combining PLMs and VAEs (Sevgen et al., 
2023).

2.3. Structure-informed sequence representations

Some methods incorporate structural information when producing a 
sequence representation. Here, the protein structure is employed as a 
selection filter for the identification of important residues, delimiting 
the sequence encoding to a curated list of amino acids and circum-
venting the issue of information dilution where redundant features 
dominate the informative ones. For biocatalysis, these structure- 
informed sequence representations ensure that the focus is directed to-
wards important parts of the enzyme, such as the active site, remote 
binding sites, or other areas believed to be important for the enzymatic 
property to be modeled (e.g., dimer interfaces).

In structure-informed sequence representations, a 3D structure is 
combined with an MSA to identify and encode specific residues in every 
protein of interest. Generally, two different approaches exist for this 
identification: manual selection and spherical extraction. The former 
method entails examining the template structure and choosing the res-
idues important for the area in focus such as the residues lining the 
active site as described by Röttig et al. in their Active Site Classification 
(ASC) strategy to model the protein families of kinases, nucleotidyl cy-
clases, trypsins, malate/lactate dehydrogenases, and decarboxylating 
dehydrogenases (Röttig et al., 2010). The list of manually curated resi-
dues is then mapped onto every protein in the MSA through the aligned 
positions of the identified residues. In the spherical extraction method, 
the list of important residues is instead acquired automatically by con-
structing a spherical boundary around the area in focus, e.g., the cata-
lytic residues, and then extracting all amino acids encompassed by this 
boundary using protein structure analysis programs such as MDTraj 
(McGibbon et al., 2015) or BioPython (Cock et al., 2009). This auto-
mated selection approach was employed by Robinson et al. to model and 
predict the substrate specificity of OleA thiolases; aligning all 73 se-
quences to the OleA thiolase from Xanthomonas campestris (Goblirsch 
et al., 2016) and extracting the active site residues from a crystal 
structure of the before-mentioned protein using a 12 Å sphere centred 
around the Cα of the active site cysteine (Robinson et al., 2020). Another 
example is Goldman et al. who examined the activity and substrate 
specificity of multiple protein families including glycosyltransferases 
and halogenases using spheres ranging from 3 Å to 30 Å (Goldman et al., 
2022).

Both selection strategies have their merits and deficiencies: while 
manual selection ensures a significant degree of control over the choice 
of residues, it ultimately requires expert curation and is highly protein 
specific. The spherical extraction technique sacrifices some of this con-
trol to alleviate these issues by only needing the centroid and radius to 
be defined, making the process faster than the manual selection.

Importantly, the structure-informed approach currently requires an 
MSA to map the identified residues to the entire set of proteins, which 
might cause problems for poor alignments with many gaps that offer 
minimal protein information. Furthermore, while the strategy can be 
used to bias the representation to focus on specific areas of the protein, 
discarding a significant portion of the sequence is also an inherent 
limitation of the method. If a distant part of the protein is important for a 
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property, e.g., due to allostery influencing protein activity (Calvó-Tusell 
et al., 2022), this information will be lost when only focusing on a 
specific site. Furthermore, if an ML model targets global properties such 
as protein fitness scores (Fox, 2005; Michael et al., 2023; Wittmann 
et al., 2021b; Wu et al., 2019) or melting temperatures (Li et al., 2023b), 
it is unlikely to benefit from focusing the protein representation on a 
particular part of the protein.

3. Structure representations

The biological structure representation contains information about 
the relative 3D positions and chemical identities of every atom and bond 
of the protein, x = ℝ3×N, with N being the number of atoms in a protein. 
Increasing the information complexity from a 1D amino acid sequence to 
a 3D structure thus introduces additional challenges for the encoding, 
especially when working with simpler ML architectures requiring an 
abstraction of the protein structure into a one-dimensional representa-
tion vector. Encoding the protein structure can either be done by 
extracting fixed features directly from the structure or by converting the 
highly detailed 3D protein into a simpler representation for producing 
learned representations. Alternatively, it can be done by utilizing a novel 
structure alphabet.

3.1. Fixed features extracted from the protein structure

Similar to describing the sequence through a set of fixed properties, 
fixed structure representations can be constructed by quantifying 
different aspects of the protein structure. This is the simplest approach to 
introduce structural inductive bias to the protein representation. While 
the use of these structural features has been limited in ML for bio-
catalysis, several approaches exist for extracting features from the 3D 
structure of a protein. Many enzymes utilise a binding pocket to tailor 
the catalytic environment, which can be converted to numerical de-
scriptors through tools such as Fpocket (Le Guilloux et al., 2009), a 
program for detecting and describing ligand-binding pockets. Features 
from Fpocket have seen use in allosteric site prediction (Xiao et al., 
2022). Accurate van der Waals surface area descriptors, moments of 
inertia, electrostatics, and thermodynamic values can be calculated 
through programs such as ProtDCal (Ruiz-Blanco et al., 2015), and those 
features have seen use in models predicting the substrate specificity of 
nitrilases (Mou et al., 2021) or estimating the kinetic parameters of 
glycoside hydrolases (Carlin et al., 2016).

3.2. Simplification of the 3D protein structure for representation learning

Instead of distilling the structural information into a set of de-
scriptors, the structural data can be converted into simplified repre-
sentations that retain more information than fixed structure features. 
This can be done with a cubic grid (voxel), protein graph representa-
tions, or protein surface representations. These methods can then be 
employed in DL architectures to construct learned protein representa-
tions (Fig. 3) (Isert et al., 2023).

3.2.1. Grid representations
The continuous protein structure can be converted to a discrete 

representation by dividing the molecular space into individual grid 
sections. Volumetric cubes — so-called voxels — represent 3D data by an 
assembly of course-grained cubes, drastically reducing the dimensions 
of the encoding (Isert et al., 2023). A grid representation biases the 
model to focus on spatially localised interactions instead of long-range 
dependencies. This can either be implemented by dividing the struc-
ture into smaller “microenvironments” and then encoding each of these 
microenvironments individually (Paik et al., 2023; Shroff et al., 2020; 
Torng and Altman, 2017), or by encoding the entire protein into a single 
arrangement of cubes based on a regular 3D grid (Amidi et al., 2018).

MutCompute is a tool that utilises the former strategy of microen-
vironments (Paik et al., 2023; Shroff et al., 2020). For every residue in 
each protein, a cubic 20 Å microenvironment is represented by 1 Å voxel 
cubes containing information about atom labels, partial charges, and 
solvent accessibility of each atom within the voxel cube. The microen-
vironment representation is then processed by a 3D convolutional neural 
network (CNN), a machine learning architecture that utilises learned 
filters to automatically detect features from locally connected data 
points, such as neighbouring letters in an amino acid sequence or 
neighbouring pixels in an image (Lecun et al., 2015), and later a fully 
connected neural network (FCNN). This processing allows the authors to 
evaluate the chemical and steric suitability of each of the 20 natural 
amino acids. Such evaluation can then be used as the basis for muta-
genesis, such as highlighted by the study achieving an improved ther-
mostability of the Bacillus stearothermphilus DNA polymerase (Paik et al., 
2023). Novel work has expanded upon the model of MutCompute, 
introducing information about phosphorus and grouped halogens and 
thereby facilitating the training on heterogeneous microenvironments 
(d’Oelsnitz et al., 2024). The new model, MutComputeX, was employed 
for the engineering of activity-enriched variants of methyltransferase.

Instead of dividing the protein structure into smaller segments, 

Fig. 3. Three common structure representations for DL architectures and their process towards a learned 1D vector representation x ∈ ℝd. Top: the protein structure 
is approximated using a 3D voxel grid representation. This grid is processed using a 3D CNN, where voxels are sequentially convoluted to obtain a more infor-
mationally condensed representation. This can be repeated until a desired dimensionality is obtained. Middle: the protein graph is a non-linear representation of the 
structure using nodes, such as atoms or residues, and edges, such as bonds or interactions. In the GNN, the properties of each node are passed through the edges to 
update the node information, so each representation is influenced by the neighbours. Bottom: Triangulation creates a protein surface representation with each vertex 
containing physicochemical information. The mesh is usually deformed to a polar coordinate system and processed using a neural network to reduce the dimensions.
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Amidi et al. employed the entire protein structure in their encoding 
strategy (Amidi et al., 2018). The protein backbone is converted into a 
binary voxel grid with a predefined resolution and processed by a 3D 
CNN. The model was trained to predict EC numbers, achieving an ac-
curacy of 78.4 %. The authors furthermore highlighted the versatility of 
this approach, as the model’s binary voxel representation can be 
replaced by physicochemical properties such as hydrophobicity and 
isoelectric points. This allows future models to include inductive biases 
tailor-made for a specific task. It should be noted that while the voxel 
representation can directly capture the 3D nature of proteins, it is not 
without limitations. For example, it is sensitive to rotations and trans-
lations of a 3D structure in space and does not directly capture infor-
mation about chemical bonds.

3.2.2. Protein graphs
An alternative approach to grid representations is to turn the 3D 

protein structure into a graph representation where the structural in-
formation of the protein is encoded as elements and connections, 
designated as “vertices”/“nodes” and “edges”, respectively (Fasoulis 
et al., 2021). Here, the inductive bias stems not merely from local 
neighbourhood information but rather from the complex network of 
node interactions, emphasizing the connectivity patterns. Different 
detail levels can be employed when creating protein graphs. For atom-
istic resolution, features of each node may consist of atom type and 
charge, while the edges represent the molecular bonds (Fasoulis et al., 
2021). A more coarse-grained approach is the residue-level description 
where the nodes represent entire amino acids, and the edges specify both 
the covalent and non-covalent interactions between the residues. For 
residue-level protein graphs, the node features can include physico-
chemical properties such as polarity and hydrophobicity (Fasoulis et al., 
2021) or more advanced residue encodings such as evolutionary infor-
mation or secondary structure (Li et al., 2023b). Importantly, a graph is 
a non-linear data structure. The node connections can be represented 
using adjacency matrices where the ith element in the jth row describes 
the edge between the ith and the jth node, with the ordering of the nodes 
being arbitrary. The protein contact map is an example of an adjacency 
matrix.

Due to the non-linearity of graph representations, it is often infea-
sible to combine them with a classical ML architecture, such as logistic 
regression or tree-based models. This processing issue is solved by 
employing Graph Neural Networks (GNNs), a network architecture that 
directly implements the graph representation in model construction. In 
contrast to traditional neural networks where the information is passed 
through a series of hidden layers, GNNs utilise the edges as channels for 
information transfer between the individual nodes. This ensures that 
only information originating from neighbouring nodes within a pre- 
defined proximity is used to update each node (Zhou et al., 2020).

An exciting example of a GNN-based enzyme predictor is DeepFRI, a 
model leveraging both sequence and structure representations to model 
Gene Ontology (GO) terms and EC numbers (Gligorijević et al., 2021). 
Here, the sequence embeddings of a pre-trained PLM are used as residue 
nodes while a protein contact map is utilised as graph edges. This allows 
the model to utilise the sequence information distilled by a PLM while 
harnessing the power of a GNN architecture to propagate residue-level 
features based on structural proximity. The authors showed that Deep-
FRI outperformed baseline models that only employed either sequence 
embeddings or contact maps with OHE, hypothesizing that the main 
advantage came from combining features over residues distant in the 
primary sequence but close in the 3D space. A recent study also proposed 
to combine the ESM2 sequence embeddings with graph-based structure 
embeddings for downstream tasks, such as predicting EC numbers, 
introducing the Protein Structure Transformer (PST) architecture which 
outperformed previous state-of-the-art models (Chen et al., 2024). The 
authors attributed this performance to the interplay between structural 
and sequential features in PTS, as the structural information is inte-
grated directly into the attention mechanism of the PLM.

It should be noted that while building GNNs requires a significant 
amount of data, pre-trained structure embeddings can be utilised as 
protein encodings, drawing a parallel to the pre-trained sequence em-
beddings. This was highlighted by the authors of PST, exhibiting high 
performance using pre-trained protein embeddings extracted from the 
model (Chen et al., 2024). Another example is the Masked Inverse 
Folding (MIF) model (Yang et al., 2023), a GNN trained on the sequences 
and structures of 19.000 proteins in the CATH4.2 dataset (Dawson et al., 
2017, 2019) to reconstruct a corrupted protein sequence using backbone 
information. The MIF embeddings have seen use as a representation of 
the protein structure (Hou et al., 2023), where the power of GNNs is 
harnessed to process structural information without requiring either a 
large dataset or computationally costly model training.

3.2.3. Surface encodings
Finally, the protein can be modeled using a mesh-based variant of the 

molecular surface, a continuous sheet describing the accessibility trace 
of the molecule using a probe of a given radius (Richards, 1977). An 
example is the surface used for calculating the previously mentioned 
SASA, where the contact surface is the parts of the atomic van der Waals 
spheres in contact with the probe. The continuous surface can be dis-
cretized using triangulation, where the curvature is converted into a 
protein polygon mesh using tools such as MSMS (Sanner et al., 1996). 
These surface meshes are often encoded with the physicochemical in-
formation of the residues or atoms, allowing them to function as protein 
representations in ML models. As a result, surface encodings introduce 
inductive biases towards both geometrically relevant information – such 
as curvature, channels, and pockets – and physicochemical properties. 
Such biases emphasizes complementarity and allows the representation 
to accurately describe protein properties such as binding accessibility.

Notable examples of models harnessing surface representations 
include molecular surface interaction fingerprinting MaSIF (Gainza 
et al., 2019). In this example, the surface is here segmented by assigning 
radial patches to every vertex in the protein mesh and generating an 
overlapping collection of surface vertices. Geometric features and 
chemical properties are calculated for each vertex within the patches, 
and the mesh is mapped to a polar coordinate system. This representa-
tion is passed through a convolutional architecture that produces 
learned fingerprint descriptors. The authors utilised these fingerprints to 
classify ligand-binding pockets, predict protein-protein interaction sites, 
and estimate the structural configurations of protein-protein complexes. 
While not inherently targeting biocatalysis, Gainza et al. consequentially 
highlight the advantage of surface presentation learning for under-
standing protein interactions.

In SURFMAP, the reduced surface generated by the MSMS tool 
(Sanner et al., 1996) is employed to generate a set of particles, each 3 Å 
away from the protein surface (Schweke et al., 2022). After mapping the 
particles with a feature such as hydrophobicity or stickiness related to 
the closest residue, their spherical coordinates are projected onto a 2D 
map using the Sanson-Flamsteed 2D projection. The authors employed 
this simplified representation to construct a hierarchical clustering 
model of superoxidase dismutases. This allowed them to distinguish 
between enzymes with different oligomerization states and metal ion 
binding preferences. Lastly, the HoloProt model combined structure- 
and surface-based graphs in multi-scale graph representation to predict 
enzyme classifications and protein-ligand binding affinities (Somnath 
et al., 2021).

3.3. Alternative structure representations

While we have generally categorized protein structure representa-
tion as either fixed descriptors or geometrical simplifications for learned 
representations, some approaches fall outside of this division. Recently, 
a novel technique for representing the protein structure using a string of 
letters has emerged in Foldseek (van Kempen et al., 2023). Originally 
designed as a tool to efficiently align a query structure against large 
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databases, Kempen et al. developed an intriguing structure encoding. An 
artificial alphabet — denoted 3Di — describing the tertiary interactions 
of the protein is generated using a VAE. Each protein is encoded using 
this 3Di alphabet, and the resulting sequences are parsed through the 
prefilter modules of MMseqs2 (Steinegger and Söding, 2017), a protein 
sequence searching tool, to use in alignment queries. The Foldseek 
structure-to-sequence approach facilitates the use of traditional 
sequence representation architecture to process structural information 
(Heinzinger et al., 2023; Sledzieski et al., 2023; Su et al., 2023; Waks-
man et al., 2024). While no enzyme models have been trained using 
these 3Di representations as of the writing of this review, we envision 
this to be an exciting area for future utilization of structural information.

4. Dynamics representation

At the heart of enzymology lies the dynamic nature of enzymes 
(Henzler-Wildman and Kern, 2007), a realm where static structural 
protein models meet their limits (Lane, 2023). Enzyme dynamics are 
becoming a key component to understanding and engineering enzyme 
function, yet the incorporation of dynamic representations in ML re-
mains in its infancy. Enzyme dynamics is observed as the collective 
movements at time scales of femtosecond bond vibrations, nanosecond 
side-chain fluctuations, and millisecond domain motions. Together, 
these motions are termed conformational dynamics and are critical for 
understanding enzymes (Agarwal et al., 2020; Corbella et al., 2023; 
Henzler-Wildman and Kern, 2007).

4.1. Dynamics as a tool to understand, predict, and engineer enzymatic 
activity

Dynamics are important and offer explanations to why distal muta-
tions accumulate during directed evolution campaigns (Osuna, 2021), 
why conformational changes such as lid opening/closing rates can be 
rate-limiting (Wolf-Watz et al., 2004), and how conformational het-
erogeneity is linked with evolvability of enzyme function (Campbell 
et al., 2016, 2018; Corbella et al., 2023; Kim and Porter, 2021). Enzyme 
dynamics form a foundation on which enzymes have been studied 
rationally, ranging from the canonical β-lactamase (Galdadas et al., 
2021), to halogenases (Ainsley et al., 2018), transferases (Tian et al., 
2024), lipases (Behera and Balasubramanian, 2023), luciferases 
(Schenkmayerova et al., 2021), dehalogenases (Vasina et al., 2022), 
dehydrogenases (Calzadiaz-Ramirez et al., 2020), and P450 mono-
oxygenase (Acevedo-Rocha et al., 2021). Dynamics often explain the 
evolution of enzymes, as they seemingly evolve dynamic networks and 
freeze out unproductive motions to increase catalytic activity (Bunzel 
et al., 2021; Campbell et al., 2016).

Predictions of mutant effects on dynamics using statistical tools and 
algorithms are currently enabling the challenging task of conforma-
tionally driven enzyme design (Osuna, 2021). The approaches are, 
however, not limited to computational tools. Experimentally driven 
design of dynamics is also underway, enabled by advances in NMR, 
room-temperature and time-resolved X-ray crystallography, facilitating 
experimental studies of enzyme dynamics and elucidating its link to 
activity (Bhattacharya et al., 2022; Broom et al., 2020; Weinert et al., 
2017).

Interestingly, the link between dynamics and activity has a long 
history of controversy and ill-defined “dynamic effects” (Kamerlin and 
Warshel, 2010; Olsson et al., 2006; Tuñón et al., 2015; Warshel and 
Bora, 2016). Beyond semantic discrepancies, theoretical and experi-
mental evidence indicates that equilibrium effects do occur and 
contribute to catalysis, but that non-equilibrium effects are either 
negligible (Warshel and Bora, 2016), non-existent (Glowacki et al., 
2012), or important (Kohen, 2015). Here, equilibrium entails all protein 
conformations accessible under thermal equilibrium with the environ-
ment. Under this framework, we may differentiate contributions to 
catalysis by equilibrium dynamics (the movement itself) and 

contributions by specific conformations enabled by equilibrium dy-
namics. In the former case, lid-opening and closing rates are key ex-
amples, as they may present rate-limiting steps in the catalytic cycle 
associated with ligand binding and product release. Furthermore, under 
the induced fit hypothesis, the conformation may change into a cata-
lytically competent state using the free energy of binding, again an 
example of dynamics in the catalytic cycle (Agarwal et al., 2020). In the 
latter, certain sub-conformations are catalytically pre-organised and 
selected for upon ligand binding. This has become known as the 
conformational selection hypothesis and can explain observed rate- 
enhancements in some enzymes when dealing with classical transition 
state theory (Eisenmesser et al., 2005; Glowacki et al., 2012) In this 
view, engineering enzyme “dynamics” amounts to a “population shift” 
problem (Osuna, 2021): to increase the relative population of catalyti-
cally competent states. This itself is, however, not rigorously a dynamic 
effect according to theorists, but due to thermodynamic contributions 
along the catalytic cycle (Warshel and Bora, 2016).

Nonetheless, conformational dynamics at equilibrium can contribute 
significantly to activity and correctly utilizing the dynamics information 
will be of great importance in further advancing enzyme engineering in 
combination with ML, a task that is currently underway (Broom et al., 
2020; Corbella et al., 2023; Venanzi et al., 2024; Osuna, 2021; Romero- 
Rivera et al., 2022; St-Jacques et al., 2023). What remains are ML/DL- 
driven end-to-end solutions for predicting changes in catalytic activity 
based on dynamic representations. This necessarily requires numerical 
representations that are well-suited for available architectures. The next 
frontier of computational biology is to predict the correlation between 
changes in conformational dynamics, specific mutations, and their effect 
on multiple enzyme properties including activity and selectivity, work 
which is well underway. This includes recent works on multi-state 
design, including simple dynamic representations to predict changes 
in activity, and ensemble-based enzyme design (Broom et al., 2020; 
Venanzi et al., 2024; St-Jacques et al., 2023).

4.2. A primer on conformational dynamics

Utilizing the temporal dimension of structural biology implies 
moving from a single structure in Euclidean space (x ∈ ℝ3N) to a set of 
structures (X = {x1,x2,……,xK}) for different time points. The temporal 
perspective (ℝ3n

x,y,z × ℝt) is challenging for biologists and computational 
scientists alike, as relevant collective movements must be extracted and 
correlated with enzymatic properties. It is a significant challenge for 
both communities to represent these movements efficiently. The task of 
dynamic representations is thus finding conversion – a mapping denoted 
as f – between the high-dimensional input using a collection of structures 
X to a lower-dimensional representation (f: X → ℝd), without losing 
essential information.

Reflecting contemporary opinions (Vani et al., 2023), it is pertinent 
to clarify the dynamics of enzymes, which can be defined as a hierarchy 
of information (Fig. 4). While the simplest protein dynamics examina-
tion is short-timescale sampling around one conformational state, for 

Fig. 4. The hierarchy of information for dynamics. Conformational Diversity is 
all accessible conformations without any order, while the order of the relative 
population is known in Conformational Ranking. Boltzmann Diversity orders all 
conformational states according to their Boltzmann weights. Lastly, Confor-
mational Dynamics contains all accessible conformational states with correct 
Boltzmann weights and inter-conversion timescales (arrows).
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systems populated by multiple conformational states, e.g., A, B, and C, 
conformational diversity is defined as all accessible conformations 
without any order ({C, A, B}). Conformational ranking implies that the 
order of relative population is known ({A, B, C}). Boltzmann diversity 
orders all conformational states with correct Boltzmann weights (rela-
tive populations). Lastly, conformational dynamics are all accessible 
conformational states with correct Boltzmann weights and inter- 
conversion timescales (arrows in Fig. 4). Using these definitions, many 
approaches do not rigorously describe conformational dynamics, but 
only aspects on low rungs of the information hierarchy.

4.3. Dimensionality reduction of MD simulations

Enzyme dynamics is typically studied computationally using long- 
duration molecular dynamics (MD) simulations in silico, based on 
Newtonian dynamics using small time steps to propagate a system for-
ward a small unit in time (typically femtoseconds, 10− 15 s). Often, this is 
carried out for millions of time steps resulting in a high-dimensional 
representation, and the challenge then lies in reducing dimensionality 
while conserving relevant dynamics information (Fig. 5). These re-
ductions are termed collective variables (Bhakat, 2022).

Collective variables were conventionally geometric measures be-
tween key catalytic residues and the ligand (Bhakat, 2022). These may 
represent the temporal fluctuation of distances, angles, or dihedral an-
gles, thus introducing an inductive bias that focuses on key interactions. 
The measures are selected based on domain knowledge of enzyme 
function and mechanism and have been successfully used to predict and 
engineer enzymes (Maria-Solano et al., 2018; Venanzi et al., 2024).

Modern collective variables are learned, finding a collective coor-
dinate system that retains crucial information of the dynamic system. 
Briefly, a linear/non-linear map (E) is estimated which projects the high- 
dimensional data X to a lower dimensional space (y = E(X), see Fig. 5) 
(Noé et al., 2020). Common examples include principal component 
analysis (PCA), and time-lagged independent component analysis (tICA) 
(Bhakat, 2022; Schultze and Grubmüller, 2021), or a more advanced 
variational approach for Markov processes (VAMPnets) (Ghorbani et al., 
2022; Mardt et al., 2018). These are frequently used to represent the 
dynamic enzyme system and can help with visualizing the relative 
population of conformational states (Acevedo-Rocha et al., 2021; 
Agarwal et al., 2020; Curado-Carballada et al., 2019; Romero-Rivera 
et al., 2017).

In analogy with collective variables, many dynamic representations 
often remain a function of time, and time-averaged measures are thus 
beneficial to further reduce the dimensionality (Z(y) in Fig. 5). For 
example, root-mean-square deviation (RMSD, ℝ(t)) is a time-dependent 
measure, but root-mean-square fluctuation (RMSF, ℝN) is not. Time- 
averaged measures are popular as they can reduce geometric collec-
tive variables (e.g. distance fluctuations) to a single scalar value. While 
this summarises the entire time series, it is inherently coarse-grained, 

thus potentially losing the representation of key dynamic behavior. 
Nevertheless, the time-dependent and independent measures (RMSD 
and RMSF, respectively) and their variance remain key representations 
of rigid and mobile regions in enzymes as well as or indicators of 
whether catalytically conducive conformations are sampled. These 
features can be thought of in the context of the aforementioned map f, in 
this case Z(E(X)), which produces a low-dimensional representation ℝk 

by summarising the variability of a collection of structures X across a 
simulation (Ainsley et al., 2018; Audagnotto et al., 2022; Kamerlin and 
Warshel, 2010). Lastly, the time-averaged measures introduce an 
inductive bias by emphasizing stable, predominant features and poten-
tially overlooking transient or less frequent states.

4.4. Multi-state design

Another state-of-the-art strategy is to employ energy-centric 
methods. These methods cannot explain anything past the Boltzmann 
diversity on the conformational information hierarchy and assume that 
hinge motions or other major conformational states can be slightly 
perturbed in their stability by mutation to favor a desired conformation. 
These major conformational states may be contributing to substrate 
specificity and activity, thus a multi-state design accounts for the rele-
vant ΔΔG of mutations with respect to the change in conformation (St- 
Jacques et al., 2023). This energy-centric representation associates an 
energy value with each mutant and conformational state, which may be 
used to assess the relative stability of conformational states. In terms of f, 
each structure x is assigned an energy which drastically reduces the 
dimensionality of the representation.

4.5. Shortest path map; a dynamic representation

At equilibrium, a more informative representation of dynamics may 
instead be derived from long-duration MD simulations. These repre-
sentations elucidate allosteric networks (communication paths between 
distal residues and the active site) and can be obtained by considering 
the dynamic cross-correlation matrix made of elements 

Cij =

〈
Δri⋅Δrj

〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈
r2

i
〉〈

r2
j

〉√

where Cij is the dynamic cross-correlation between residue i and j, 〈Δri ⋅ 
Δrj〉 is the time-averaged displacement from the mean coordinate of 
residue i and j, and √〈r2

i 〉〈r2
j 〉 is a normalization factor. This represen-

tation was developed by the group of Silvia Osuna and recently deployed 
as a web server (Casadevall et al., 2024), conferring accessibility of 
dynamic representations. The measure lies one rank above residue- 
independent measures such as RMSF, as it treats pairs of residues in a 
dynamic, but time-averaged, context (Morra et al., 2012). One obtains a 
representation of ℝN×N, where N is the number of atoms, a square matrix 

Fig. 5. Procuring protein representations from dynamics. Dynamics are often studied using high dimensional MD simulations, with X containing both multidi-
mensional spatial and temporal information. Using a map, E, k lower-dimensional collective variables that summarise the relevant dynamics of the system can be 
extracted. The dimensions can be further reduced by averaging over the temporal dimension, Z(y), obtaining time-averaged variables.
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with information about the covariance of residues. The allosteric net-
works derived from this representation have been strongly correlated 
with distal mutations and subsequent effects on catalytic activity. In 
fact, many directed evolution campaigns accumulate mutations along 
allosteric networks in retro-aldolase, tryptophan synthase, cytochrome 
P450 oxygenase, imidazole glycerol phosphate synthase, and protein 
tyrosine phosphatase (Acevedo-Rocha et al., 2021; Calvó-Tusell et al., 
2022; Crean et al., 2021; Gergel et al., 2023; Maria-Solano et al., 2021; 
Romero-Rivera et al., 2017, 2022). Importantly, the inductive bias 
introduced by allosteric representations allows an ML model to utilise 
the information embedded in the interaction networks of the protein. 
This bias focuses the model on critical interactions and communication 
pathways that govern allosteric regulation, potentially leading to more 
accurate predictions of functional states and conformational changes. 
Alternatively, asymmetric measures have also become prevalent, 
describing the directionality in coupling and thus elucidating residues 
controlling dynamics (Kazan et al., 2023).

During catalytic transformation, non-equilibrium dynamics have 
been observed using advanced MD tools. This so-called dynamical 
nonequilibrium molecular dynamics (D-NEMD) method is an alternative 
but complimentary way of representing allosteric networks from which 
one obtains a time-dependent vector, Rn(t), that carries information 
about communication pathways in the catalytic cycle (Castelli et al., 
2024; Oliveira et al., 2021).

4.6. Learned dynamic representations and future directions

Finally, to address conformational transitions using a full description 
of conformational dynamics, Markov state models (MSM) are critical as 
they capture both relative populations and inter-conversion timescales 
between conformational states (Chodera and Noé, 2014). Despite their 
initial challenges (Konovalov et al., 2021), MSMs have successfully been 
applied to explain the dynamic behavior of many enzymes, e.g., poly-
merases, isomerase, glycosylases, and synthase (Gordon et al., 2016; 
Konovalov et al., 2021; Wapeesittipan et al., 2019). With subsequent 
advances in ML, the collective variables are learned and extracted to 
form a thermodynamic and kinetic basis for understanding the enzyme 
in question (Ghorbani et al., 2022; Mardt et al., 2018). They are typically 
represented by a transition probability matrix (ℝ|S|×|S| where |S| is the 
number of discrete states) and a stationary distribution (π = [π1, …,π|S|]) 
describing the relative population of states, which are obtained from 
long-duration MDs.

The representations above are often derived from long-duration MD 
simulations, and thus limit the use of dynamics data in ML due to their 
computational cost. This tension lies in the discrepancy between the 
femtosecond time step of MDs and the microsecond-millisecond time-
scales at which large conformational changes occur that are important 
for enzymatic catalysis.

In principle, however, MD is not the only approach for obtaining a 
collection of structures X. The field is currently addressing this by 
employing ML tools and DL generative models, where X is considered as 
being derived from a probability distribution p(x). Generating X is thus a 
question of sampling from p(x). It has been shown that AlphaFold2 can 
be used to obtain various conformational states of proteins by feeding 
shallow MSAs (Casadevall et al., 2023; Sala et al., 2023; Wayment-Steele 
et al., 2024). These methods only obtain conformational diversity on the 
information hierarchy but have subsequently been extended towards 
Boltzmann diversity using seeded MD simulations (Audagnotto et al., 
2022; Vani et al., 2023). Alternatively, a combination of AlphaFold2 and 
generative models has also been developed to enable the generation of 
conformational ensembles (Jing et al., 2024). Thus, a rapidly expanding 
toolkit with which conformational ensembles can be generated is being 
established (Arts et al., 2023; Bose et al., 2023; Mansoor et al., 2024; 
Noé et al., 2020), enabling dynamic representations to be used in 
biocatalysis.

5. Protein-substrate representations

In previous sections, the emphasis has been on the featurisation of 
the protein. However, those strategies do not consider the possible in-
teractions with the protein environments, e.g., solvents, ligands, sub-
strates, or cofactors. This is an integral part of biocatalysis and 
constitutes a treasure trove of information that could prove beneficial in 
the training of ML models. The inclusion of protein-substrate in-
teractions would, in most cases, include molecular docking, but could 
also involve protein dynamics, QM/MM simulations, or even crystallised 
complexes (Bonk et al., 2019). Notably, representation utilizing such 
protein-substrate features often forces the model to focus on the inter-
action site and expands the inductive bias to include ligand properties. 
This could, in turn, assist in addressing tasks such as predicting substrate 
specificity or elucidating the structure-function-relationship of enzymes 
(Berselli et al., 2021). Within the realm of ML, features extracted from 
substrate-docking have yet to be fully leveraged (Ao et al., 2024) and are 
possibly challenged by difficulties in translating protein-substrate 
complexes into a numerical and general representation. However, 
some studies have successfully included information harvested from 
protein-substrate complexes for ML models employing different strate-
gies which will be introduced in this section (Fig. 6).

5.1. Molecular docking-based descriptors and binding energies

One strategy to generate representations of the protein-substrate 
binding involves using descriptors derived from molecular docking 
tools. These molecular docking-based descriptors typically describe the 
binding energies and stability of the obtained protein-substrate poses. 
For example, the docking-based descriptors from Rosetta (Davis and 
Baker, 2009; Meiler and Baker, 2006) can be combined with physico-
chemical and active site descriptors to train a model that predicts the 
substrate scope of bacterial nitrilases (Mou et al., 2021). The docking- 
derived descriptors described interfacial interaction energy terms 
including full-atom van der Waals attraction, electrostatics, van der 
Waals repulsion, hydrogen bonding terms, and solvation energy. From 
all the features used to train the random forest model, the attractive part 
of the Lennard-Jones potential obtained from the docking-derived de-
scriptors was revealed to be the most consistently important variable for 
the model’s performance. A similar approach has been employed to 
predict the site of metabolism for cytochrome P450 monooxygenases 
and their substrates in multiple instances (Feng et al., 2023; Huang et al., 
2013; Zaretzki et al., 2011, 2013). One example included the use of 
substrate interaction-based descriptors derived from Autodock Vina 
(Eberhardt et al., 2021; Trott and Olson, 2010) along with chemical 
reactivity descriptors to train a multiple-instance ranking algorithm 
(Huang et al., 2013). The model was then used to predict the site of 
metabolism of the substrates of two cytochrome P450 enzymes, yielding 
an accuracy of the top two predicted rank positions of 86 % and 83 %, 
respectively for the two isoforms.

A slightly different route was taken in a study of the bile acid spec-
ificity in a single bile acid hydrolase (WT and two mutational variants) 
(Karlov et al., 2023). Here, a previously published complex of the bile 
acid hydrolase and a bile acid was used as a template to model the 
complex with other bile acid substrates with MD simulations. The last 
nanosecond of a 100 ns simulation was used for binding energy calcu-
lations employing molecular mechanics Poisson-Boltzmann surface area 
and molecular mechanics generalised Born surface area methods 
implemented in AmberTools (Case et al., 2023). The calculated binding 
energies were then correlated with the corresponding activity data using 
linear regression which led to the identification of structural de-
terminants of substrate binding and specificity.

5.2. Interaction fingerprinting

Another way of representing protein-substrate interactions is 
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through interaction fingerprinting which captures the protein-substrate 
interactions in one-dimensional binary representations (Fig. 6) 
(Desaphy et al., 2013). This method was utilised for predicting kinase 
inhibitors by comparing models trained on ligand-interaction finger-
prints with models trained on molecular fingerprints of the substrates 
(Witek et al., 2014). Here, the models trained on the interaction fin-
gerprints outperformed the models trained on molecular fingerprints in 
discriminating between active and inactive compounds. The use of 
interaction fingerprints was also explored in a model trained to predict 
the ligand affinity of HIV-1 protease inhibitors (Leidner et al., 2019). 
The authors extracted interaction fingerprints from crystallised protein- 
substrate complexes harvested from the Protein Data Bank (Berman 
et al., 2000), adapting the binary encoding into continuous features 
describing selected non-covalent interactions. These interaction finger-
prints were used to train a gradient-boosting model achieving an RMSE 
of 1.48 kcal/mol. The study also demonstrated the interpretability of the 
model using Shapley values which elucidated that van der Waals in-
teractions were critical for model performance.

5.3. Distance and angle-based representations

An alternative encoding strategy for protein-substrate complexes is 
the use of distances and angles between the substrate and surrounding 
residues (Fig. 6). This was leveraged in a study of hydrolases for the 
breakdown of several classes of substrates (Ran et al., 2023). Here, the 
authors aimed to construct a model that could predict the hydrolytic 
activation free energy for the reactive complexes of hydrolase-catalysed 
reactions along with the favored enantiomer of the product. The ability 
to predict the enantiomeric outcome was enabled by including an 
atomic distance map consisting of atomic distances between a docked 
substrate and the Cα atoms of the surrounding catalytic residues trans-
formed into a tensor by a single-layer CNN. This map was concatenated 
with the dihedral angles of the docked substrate converted into sine and 
cosine values. Combined with sequence-based representations and 
substrate SMILES, a classifier model could distinguish between reactive 
and unreactive poses achieving an AUC of 0.87 and a good Pearson R 
value of 0.72. Combining the classifier model with a regressor model 
enabled the prediction of the enantiomeric excess values of the product. 
To evaluate the model performance, the test set reactions were classified 

into three categories (strong preference for the R-configuration, strong 
preference for the S-configuration, and moderate stereoselectivity) 
leading to a reported accuracy of 55 %. Distances and angles between 
substrate and enzyme were also employed in a study of ketol-acid 
reductoisomerases (Bonk et al., 2019). The 68 generated features, con-
sisting of distances and angles between catalytic residues, substrate, 
cofactor, and active site waters, and magnesium ions, were regularised 
using LASSO regression, fed to a logistic classifier, and subsequently 
clustered. The trained model could differentiate between reactive and 
almost-reactive trajectories with >85 % accuracy. Furthermore, ranking 
the features from LASSO enabled the identification of a subpart of the 
reactive site to be particularly important in describing the activity of the 
enzyme.

5.4. Graph neural networks for protein-substrate interactions

Lately, GNNs have been readily employed to capture detailed in-
formation from the protein-substrate complex by converting the docking 
pose into a graph representation where the nodes represent the atoms 
and the edges represent their interaction (Yang et al., 2023). This could 
include the interaction between protein and substrate, between protein 
and protein, and between substrate and substrate (Fig. 6) (Lu et al., 
2023; Xia et al., 2023). While not in the realm of biocatalysis, this 
technique has been used to improve the accuracy of scoring functions of 
molecular docking (Wang et al., 2022; Yang et al., 2021a) and to predict 
protein-ligand affinities (Mastropietro et al., 2023; Wang et al., 2023), 
especially within drug discovery (Yang et al., 2022). Since enzymes do 
not solely rely on binding affinity for their functionality, one cannot 
draw direct parallels between the use of GNNs in these cases and in the 
case of predicting/understanding the substrate scope of enzymes. 
However, one study used a GNN-based model to predict and interpret 
the substrate specificity of multiple mutational variants of two model 
proteases (Lu et al., 2023). This was achieved by developing a protein 
graph convolutional network that could model protein structures and 
their complexes as fully connected graphs where each node corre-
sponded to an amino acid from either the protein or the peptide- 
substrate while the edges represent the pairwise residue interactions 
between the nodes. The generated model could ultimately predict pro-
tease activity with a given substrate achieving an accuracy >85 % across 

Fig. 6. Approaches for encoding protein-substrate complexes. The protein-substrate complex can be encoded based on the intermolecular interactions into a binary 
string commonly denoted as a fingerprint (left). The complex can also be represented by the dihedral angles and distances between catalytic residues along with the 
angles and distances between catalytic residues and the substrate (middle). Lastly, the protein-substrate complex can be converted into a graph representation where 
the nodes represent the atoms and the edges represent the interaction between two atoms (right). Notably, while not shown, the complexes can also be represented 
using scoring functions.
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protease variants. In addition, the authors also displayed how node and 
edge ablation tests provided insights into the feature importance of the 
models. In a model that only included sequence-based features, the 
edges did not affect the model accuracy, and the peptide nodes played a 
leading role. However, when energy-based features were included, 
ablating edge-based features significantly impacted the model accuracy 
with the intermolecular edges being particularly important.

Overall, the use of protein-substrate complexes to generate repre-
sentations holds great promise within ML for biocatalytic systems. Many 
of the described methods capture interpretable information which is 
useful in cases where explainability is an important factor. However, one 
should still keep in mind that obtaining protein-substrate complexes is 
computationally demanding when using molecular docking, making the 
method realistic for smaller datasets, at least until the ML-based docking 
methods significantly accelerate the process (Buttenschoen et al., 2024). 
In addition, molecular docking is not an accurate method, especially 
without manual inspection of poses, which could directly impact the 
accuracy of the model. Here, docking could be combined with MD 
simulations to potentially reveal reactive conformations which can be 
leveraged via a 2D distance map (Das et al., 2023), which offers a 
rotation- and shift-invariant representation (Bonk et al., 2019). Lastly, 
the use of protein-substrate interactions could be expanded to investi-
gate the interaction between the enzyme and a linker in relation to 
enzyme immobilisation. A study has previously shown how the combi-
nation of enzyme and ligand properties can aid in the prediction of 
immobilisation properties by training a random forest model on non- 
structural data obtained from the literature, which included variables 
such as ligand precursor volume, ligand concentration, and amount of 
enzyme (Chai et al., 2021). Given the relevance of enzyme immobili-
sation in industrial biocatalytic processes, any improvement in effi-
ciency would be important (Sheldon and van Pelt, 2013).

6. Choosing a suitable representation

Selecting the most appropriate representation approach when con-
structing models can be a challenging task, and although several at-
tempts have been made to examine the efficacies of different encoding 
techniques (Elabd et al., 2020; Goldman et al., 2022; Michael et al., 
2023; Wittmann et al., 2021b), no consensus exists for determining the 
best representation for a new protein ML model. Consequently, finding a 
suitable protein representation remains case dependent. To address this 
issue, we have provided a list of examples of ML models utilizing most of 
the representation presented in this review (Table 1) to serve as an 
inspiration for how to implement the different protein encodings. 
Furthermore, we propose two general factors to consider when choosing 
a protein representation (Fig. 7). The first factor is the model setup, 
determining the overall design of the predictive tool. This includes the 
size of the training dataset, defining the ease of discovering hidden 
patterns, and the choice of ML architecture, imposing requirements for 
the input representation. The second factor is the model objective, 
describing the type of task envisioned for the resulting model. Linking 
the choice of representation with project objectives such as the assayed 
property, wild type vs. mutational predictor, and explainability may 
eventually increase the chances of achieving these objectives. We expect 
that these two factors can be used as a source of inspiration and guidance 
when creating new ML models for biocatalysis.

6.1. Model setup

When developing an ML model, design decisions are often made 
based on element harmony, where the size of the dataset matches the 
model architecture. This is also applicable to the choice of a suitable 
protein representation, and selecting a harmonious encoding strategy 
based on the model setup is extremely important. In this section, we will 
discuss how model design can influence the appropriate representation 
approach.

Table 1 
Examples of biocatalysis models created using the representations presented in 
this paper. This list is not exhaustive.

Representation Proteina Properties Reference

Sequence

One-Hot Encoding

Fatty Acyl 
Reductases

Product titer (Greenhalgh 
et al., 2021)

Glycosyltransferases Activity (Yang et al., 
2018a)

Physicochemical 
Properties

Glycosyltransferases Donor specificity
(Taujale 
et al., 2020)

Carboxylesterases Enantioselectivity
(Xu et al., 
2024)

Thiolase Acceptor 
specificity

(Robinson 
et al., 2020)

Sortase A Enzyme 
performance

(Saito et al., 
2021)

Evolutionary 
Matrix

Glycosyltransferases Acceptor 
specificity

(Harding- 
Larsen et al., 
2024)

Sequence-based 
Structural 
Properties

Global model Turnover number
(Heckmann 
et al., 2018, 
2020)

Variational 
Autoencoders

Ornithine 
Transcarbamylase

Activity, stability (Giessel et al., 
2022)

Luciferase Functionality, 
solubility

(Hawkins- 
Hooker et al., 
2021)

Haloalkane 
Dehalogenases

Activity, solubility, 
stability

(Kohout et al., 
2023)

Protein Language 
Models

Phosphatases Activities (Xu et al., 
2022)

Multiple families
Substrate 
specificity

(Goldman 
et al., 2022)

Global model
Substrate 
specificity

(Kroll et al., 
2023a)

Global model Turnover number (Kroll et al., 
2023b)

Global model EC numbers (Yu et al., 
2023)

Structure- 
Informed 
Sequence

Multiple families
Substrate 
specificity

(Röttig et al., 
2010)

OleA Thiolases
Substrate 
specificity

(Robinson 
et al., 2020)

Structure

Fixed Features Glycoside Hydrolase Kinetic constants (Carlin et al., 
2016)

Grid 
Representation

DNA polymerase Thermostability
(Paik et al., 
2023)

Methyltransferase
Activity, product 
titer, substrate 
specificity

(d’Oelsnitz 
et al., 2024)

Global model EC numbers (Amidi et al., 
2018)

Protein Graph
Global model GO terms, EC 

numbers
(Gligorijević 
et al., 2021)

Global model EC numbers
(Chen et al., 
2024)

Surface Encodings

Superoxidase 
Dismutases

Oligomerization 
states, ion binding

(Gainza et al., 
2019)

Global model EC numbers (Somnath 
et al., 2021)

Dynamics
Collective 

Variables Bovine Enterokinase Activity
(Venanzi 
et al., 2024)

Protein-Substrate

Molecular 
Docking-based

Nitrilases
Substrate 
specificity

(Mou et al., 
2021)

Cytochrome P450s Sites of metabolism

(Huang et al., 
2013; 
Zaretzki et al., 
2011)

(continued on next page)
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6.1.1. Size of dataset
An important feature of the model setup is the size of the dataset. 

Here, a protein representation approach that produces a large feature set 
might be problematic when encoding smaller data sets due to a poor 
data-to-feature ratio, as the high dimensionality introduces sparsity and 
higher chances of finding patterns in feature noise. This can lead to 
significant overfitting, thus hindering the identification of hidden pat-
terns and trends in the data which is crucial for an efficient and accurate 
predictive model (Bellman, 1961; Theodoridis and Koutroumbas, 2008). 
The low-to-medium-throughput nature of experiments is a common 
issue in biocatalysis, which imposes significant restrictions on the choice 
of suitable representations for ML to ensure only informative features 
are incorporated.

A promising strategy to circumvent this problem is to leverage the 
large pre-trained models for self-supervised representation learning 
(Ferruz and Höcker, 2022; Notin et al., 2023; Qiu and Wei, 2023). A 

notable example of this is the approach introduced by Biswas et al., 
which involved fine-tuning the deep neural network UniRep by using 
the sequences evolutionarily related to their protein of interest, GFP, 
thus adapting the resulting latent vector embeddings to better encode 
protein information crucial to the evolution of GFP (Biswas et al., 2021). 
The resulting ML models were capable of identifying mutants with 
increased fluorescence using as few as 24 mutants as training data. 
Biswas et al. observed a large sequence diversity in the new model-based 
variants, suggesting that the increased density of evolutionary important 
information contained in the protein representation due to the fine- 
tuning procedure allowed for a greater exploration of the sequence-to- 
function space.

Related to utilizing knowledge from pre-trained embeddings, in-
sights obtained from a mutational study of a single enzyme can be 
transferred to homologues with little characterization. This is known as 
transfer learning which entails training models on large datasets to study 
scarce datasets (Yosinski et al., 2014). This could eliminate the 
requirement of conducting a thorough mutational assay every time a 
new enzyme is examined and facilitate Low-N modelling, though this is 
yet to be explored for biocatalysis.

Alleviating the issue of a low amount of data can be done with the 
previously mentioned approach of augmenting a VAE-based evolu-
tionary density score with a simple OHE (Hsu et al., 2022). Models 
trained on as few as 48 proteins exhibited good performance when 
utilizing this augmentation technique. This finding highlights how 
combining representations containing different protein information can 
be beneficial.

Notably, while a low amount of data is a significant hindrance for 
most encoding strategies, a large dataset might instead hinder the use of 
representations requiring significant processing power. This includes 
methods for QM calculations or MD simulations, as their computational 
demands make them infeasible for datasets with a large selection of 
proteins. This might be especially relevant for predictive models trained 
on dynamics representations, as the acquisition of such protein 

Table 1 (continued )

Representation Proteina Properties Reference

Bile Acid Hydrolase
Substrate 
specificity

(Karlov et al., 
2023)

Interaction 
Fingerprinting

Kinase Inhibition
(Witek et al., 
2014)

HIV-1 protease Ligand affinity (Leidner 
et al., 2019)

Distance and 
Angle-based

Hydrolases
Activation free 
energy, 
enantioselectivity

(Ran et al., 
2023)

Ketol-acid 
Reductoisomerases Reactivity

(Bonk et al., 
2019)

Protein-Substrate 
Graph

Proteases
Substrate 
specificity

(Lu et al., 
2023)

a “Global model” denotes models trained on a single dataset with multiple 
enzyme families, while “Multiple families” represents models trained on multi-
ple datasets with single enzyme families.

Fig. 7. Factors influencing the choice of a suitable protein representation. The first main factor is “model setup” (top), which concerns the size of the dataset due to 
small datasets potentially preventing the discovery of patterns contained in sparse representations. The choice of ML architecture might instead impede the use of 
certain representations due to incompatibility. The second main factor is “model objective” (bottom), as specialised representations might enhance models for 
predicting assayed enzyme properties such as activity, while full representations will likely better suit global properties, e.g., thermostability. Furthermore, WT 
models impose different requirements on the encoding strategy than mutant predictors due to the disparity in representation similarity. Finally, any explainability 
task will benefit from a clear connection between the model features and protein features.
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encodings is often computationally expensive, introducing a question of 
balance between a larger dataset and an increased usage of computa-
tional resources.

Lastly, while the size of the training dataset is extremely influential 
for the choice of suitable representation, another important related step 
is the split between test and training data. Here, the choice of repre-
sentation influences the preferred approach for cross-validation due to 
the different types of information bias (Corso et al., 2024; Kanakala 
et al., 2022; Kroll and Lercher, 2023; Li et al., 2023a). It is important to 
harmonise the dataset validation strategy with the protein 
representation.

6.1.2. Choice of architecture
Even though the choice of model architecture is often related to the 

amount of training data available due to how the performance of ML 
algorithms often depends on the size of the dataset (Beleites et al., 2012; 
Raudys and Jain, 1991), the architecture imposes different requirements 
to the representation than those described in the previous section. While 
innumerable ML architectures have been developed, researchers are 
more likely to build models inside of their field of expertise. Therefore, 
the model architecture is often determined before the encoding 
approach, and the choice of protein representation is therefore strongly 
influenced by the model architecture. Classical ML methods, such as 
logistic regression, KNN, and random forest, usually require a 1D vector 
with numerical values. Consequently, any multidimensional informa-
tion must either be flattened or reduced in dimensions before use in 
these models, potentially losing the important data structure contained 
in the representation. Employing a representation with a large feature 
set together with the simplest of architectures might also cause problems 
due to their limited capacity to discover the patterns in the feature set.

Some protein representations might require the use of advanced DL 
architectures such as GNNs and CNNs as highlighted in the description 
of structure representations. If a researcher’s field of expertise is mainly 
CNNs, combining these ML architectures with a protein voxel repre-
sentation is likely more beneficial than attempting to employ protein 
graphs and GNNs. Consequently, the generalisability of fixed descriptors 
is quite advantageous.

Finally, some ML models have shown dispositions towards memo-
rization instead of generalization (Buttenschoen et al., 2024; Corso 
et al., 2024; Kroll and Lercher, 2023; Wallach and Heifets, 2018). Rather 
than learning a fundamental relationship between the proteins and their 
function through the model features, they memorize all individual 
representations in the training set which leads to a high degree of 
overfitting. If the chosen architecture tends to achieve high validation 
accuracy due to such memorization, we propose to employ fixed 
encoding strategies instead of learned representation. This is due to the 
latter often behaving as a fingerprint with few similarities between two 
representations, while a set of proteins encoded with fixed representa-
tions often has the same values across different descriptors. In conse-
quence, the model will less likely turn towards memorization when 
these fixed features are used.

6.2. Model objective

The second factor that influences the choice of suitable protein 
representation is the objective envisioned for the ML model. Certain 
enzyme properties might benefit from using specialised representation 
methods. Another important distinction comes from the contrast be-
tween training models on WT and mutational data. Finally, we will 
discuss tasks in which explainability is essential.

6.2.1. Assayed property
If the objective of the model is to examine the activity or specificity 

of the enzymes, it is crucial to encode the active site — potentially only 
focusing on the area of the protein containing this site. In our recent 
model for glycosyltransferase acceptor specificity predictions, we 

limited the representation to contain only the N-terminal domain which 
contains the acceptor binding site (Harding-Larsen et al., 2024). The 
structure-informed ASC method also allowed Röttig et al. to focus the 
representation on the active site (Röttig et al., 2010). Other examples of 
the representations targeting task-specific parts of the protein include 
the domain embeddings of Domain-PFP for predicting Gene Ontology 
(GO) annotations (Ibtehaz et al., 2023), the site embeddings and 
encoding of neighbouring regions N-linked glycosylation site pre-
dictions in EMNGly (Hou et al., 2023), and the microenvironments of 
MutCompute used for identifying position where mutations can stabilise 
the local environment (Paik et al., 2023; Shroff et al., 2020).

However, as previously described, limiting the representation to 
specific areas of the protein can potentially remove important infor-
mation, such as for allostery or protein fitness. To capture this infor-
mation, a more general protein encoding will be more suitable to allow 
the resulting ML model to explore the entire sequence and structure 
landscape.

6.2.2. Wild type vs mutational data
Aside from predicted property, the type of enzymes, be it mutants or 

wild-type (WT) proteins, will also significantly influence the choice of 
representation as two variants of the same enzyme are inherently more 
similar than two WT proteins from the same family. An ML model 
trained on mutant data can thus utilise more specialised protein repre-
sentations than a model trained on WT data due to a significant portion 
of the sequence being constant across every variant. This strategy was 
employed by Saito et al. to encode variants of Sortase A for use in MLDE 
by only encoding five positions known to result in a high-activity 
variant, ultimately achieving an improved variant of the enzyme 
(Saito et al., 2021). Such an approach would not be possible for a WT 
predictor, as not only would large portions of the proteins potentially 
differ, but the length of each protein would unlikely be equal.

Due to the limited variance contained in the sequences of mutant 
datasets, the representation strategies require higher sensitivity to the 
minute changes between each variant. Otherwise, the resulting ML 
model will be unable to discern top-performing variants from those of 
poor nature. Unfortunately, no gold standard has been established for 
the sensitivity of encoding techniques, and it is therefore difficult to 
determine the best representation strategy in this endeavour. Wittmann 
et al. proposed that learned embeddings obtained from models trained 
on MSAs will result in representations containing a higher density of 
information important for mutational tasks due to highlighting which 
mutations are evolutionarily feasible (Wittmann et al., 2021b). Never-
theless, they only observed small performance increases when using 
embeddings from MSA Transformer (Rao et al., 2021), emphasizing how 
a suitable representation can be highly case-dependent. Consequently, 
new representation learning models should be benchmarked through 
large collections of diverse datasets such as the deep mutational scans 
collected in ProteinGym (Notin et al., 2023).

WT models do not have the same sensitivity issue due to the larger 
variance between the training sequences. This is of course by design, as 
WT models often remove proteins within a preset similarity cutoff. 
Instead, the representation of WT proteins introduces a question of 
compatibility across all proteins in both the training and test data. 
Methods requiring sequence alignments, such as OHE, BLOSUM 
encodings, or structure-informed approaches, will not work with se-
quences of low similarity. Here, graph models trained on structurally 
heterogeneous enzymes might be superior.

6.2.3. Explaining protein representations
In some studies, the model objective is mainly to produce a predic-

tive model that can be utilised for future in silico scoring of potential 
variants or WT enzymes for a given reaction. In that case, the repre-
sentation strategy producing the highest accuracy is likely desired. 
However, if the purpose of the model is instead to obtain a fundamental 
understanding of the forces governing the protein function and the 

D. Harding-Larsen et al.                                                                                                                                                                                                                       Biotechnology Advances 77 (2024) 108459 

14 



modeled process, the explainability of the model is crucial.
Recently, the notion of Explainable AI (XAI) has gained momentum, 

with terms such as explainability, interpretability, and justification 
being regarded as increasingly valuable for new models (Novakovsky 
et al., 2022; Samek et al., 2019; Vilone and Longo, 2020; Wellawatte 
et al., 2023). In ML for biocatalysis, the ability to explain model de-
cisions actively allows a more thorough understanding of enzyme fea-
tures and phenotypes. However, as XAI mainly addresses the model 
features, the accuracy of said explanations depends on the connection 
between model features and protein properties — a connection, that is 
defined by the encoding strategy.

If the model features represent inherent amino acid characteristics 
such as physicochemical properties, incorporation of XAI can help 
pinpoint which of these residue features are important for model pre-
dictions. This knowledge may lead to novel insights as well as poten-
tially assist in choosing targets for the rational design of new variants 
with enhanced enzymatic properties. For instance, XAI was utilised by 
Robinson et al. to elucidate the essential residues for the activity of 
thiolase members of the OleA enzyme family (Robinson et al., 2020) and 
by Taujale et al. to discover a buried residue important for the donor 
specificity of fold A glycosyltransferases (Taujale et al., 2020).

If coarse-grained protein properties are implemented in the model 
features, the ability to identify important amino acid attributes is 
reduced. Here, the implementation of XAI can instead be utilised to 
compare the influence of the different protein characteristics, an 
approach taken by Heckman et al. to highlight the importance of 
structural properties for the activity of metabolic enzymes at the genome 
scale (Heckmann et al., 2018, 2020), as well as by Mou et al. (Mou et al., 
2021) and Carlin et al. (Carlin et al., 2016) to identify key ligand 
binding-related features for nitrilase substrate specificity and glycoside 
hydrolase kinetics, respectively.

Finally, encoding the protein using learned embeddings introduces 
some interesting challenges in XAI, as the abstract representation often 
does not translate directly to specific properties in the protein. Conse-
quently, explaining the protein properties based on the importance of 
the model features is even more complicated than for the coarse-grained 
representations. One solution is to use an attention mechanism when 
constructing the protein embeddings, as implemented by Li et al. when 
examining the positional importance with regard to the kcat of WT 
metabolic enzymes (Li et al., 2022). Due to the DL nature of their model 
architecture, they would have been unable to directly extract the feature 
importance of their model (Samek et al., 2019; Wellawatte et al., 2023). 
Here, the authors incorporated an additional sub-architecture, the 
attention mechanism, that allowed the model to “remember” the 
connection between input properties and embedding features 
(Bahdanau et al., 2014; Li et al., 2022; Wellawatte et al., 2023).

Instead of changing the architecture, the model decisions can also be 
elucidated using input perturbation such as in silico mutagenesis, where 
the input sequence is perturbed by changing a single amino acid and 
then examining the difference between the model prediction of the 
original and new sequence (Novakovsky et al., 2022; Zhou and 
Troyanskaya, 2015). This difference, also known as the attribution score 
(Novakovsky et al., 2022), can then be calculated for a large number of 
perturbations, ideally, all possible ones, resulting in a thorough 
sequence-function landscape of the ML model. This landscape can be 
examined to determine the key residue properties, thus introducing 
explainability to an inherently abstract protein representation and 
modelling approach.

7. Summary & outlook

In this review, we have presented a diverse selection of the most 
prominent strategies for encoding enzyme information for ML model-
ling. The representation approaches are capable of utilizing varying 
levels of protein information, from primary sequence to temporal dy-
namics, and their complexities range from fixed descriptors with little 

inductive bias to learned presentations extracted from complex DL 
models. To navigate this ever-growing field, we introduced two main 
factors for choosing the most suitable encoding strategy: “model setup”, 
especially the aspects concerning the training dataset size and ML ar-
chitecture, and “model objective”, relating to the assayed enzyme 
property, the differences between a WT model and mutant predictor, 
and explainability of the model. We believe that this review serves as 
both a source of information and a guide for future researchers in bio-
catalysis when determining a suitable encoding strategy for their own 
ML models. The field is rapidly expanding, and we envision a promising 
future for the development and use of more sophisticated protein 
encodings. Solving the Low-N problem is a pressing objective, and future 
approaches should build on the pioneering work of fine-tuning pre- 
trained PLM embeddings or the combination of representations con-
taining distinct information and inductive bias. Another vital task is to 
efficiently incorporate protein dynamics representations due to their 
ability to capture crucial aspects of enzymatic behavior. Lastly, we hope 
that future ML projects for biocatalysis will ensure a better alignment 
between the choice of protein representation and model design.
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