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Abstract

Background: Micro- and nanoplastics (MNPs) are emerging pollutants of concern with ubiquitous presence in global ecosystems.
MNPs pose potential implications for human health; however, the health impacts of MNP exposures are not yet understood.
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Recent evidence suggests that MNPs can cross the placental barrier, underlying the urgent need to understand their impact on
reproductive health and development.

Objective: The Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics (AURORA)
project will investigate MNP exposures and their biological and health effects during pregnancy and early life, which are critical
periods due to heightened vulnerability to environmental stressors. The AURORA project will enhance exposure assessment
capabilities for measuring MNPs, MNP-associated chemicals, and plastic additives in human tissues, including placenta and
blood.

Methods: In this interdisciplinary project, we will advance methods for in-depth characterization and scalable chemical analytical
strategies, enabling high-resolution and large-scale toxicological, exposure assessment, and epidemiological studies. The AURORA
project performs observational studies to investigate determinants and health impacts of MNPs by including 800 mother-child
pairs from 2 existing birth cohorts and 110 women of reproductive age from a newly established cohort. This will be complemented
by toxicological studies using a tiered-testing approach and epidemiological investigations to evaluate associations between
maternal and prenatal MNP exposures and health perturbations, such as placental function, immune-inflammatory responses,
oxidative stress, accelerated aging, endocrine disruption, and child growth and development. The ultimate goal of the AURORA
project is to create an MNP risk assessment framework and identify the remaining knowledge gaps and priorities needed to
comprehensively assess the impact of MNPs on early-life health.

Results: In the first 3 years of this 5-year project (2021-2026), progress was made toward all objectives. This includes completion
of recruitment and data collection for new and existing cohorts, development of analytical methodological protocols, and initiation
of the toxicological tiered assessments. As of September 2024, data analysis is ongoing and results are expected to be published
starting in 2025.

Conclusions: As plastic pollution increases globally, it is imperative to understand the impact of MNPs on human health,
particularly during vulnerable developmental stages such as early life. The contributions of the AURORA project will inform
future risk assessment.

International Registered Report Identifier (IRRID): DERR1-10.2196/63176

(JMIR Res Protoc 2024;13:e63176) doi: 10.2196/63176

KEYWORDS

epidemiology; pregnancy; toxicology; microplastics; placenta; risk assessment

Introduction

Plastic is pervasive in both built and natural environments.
Global plastic production was estimated to be 400.3 million
tons in 2022, with most plastic generated for single-use purposes
[1]. Despite growing regulatory efforts to reduce plastic
production and increase recycling, global plastic production is
projected to increase to 1100 million tons by 2050 [2-4]. The
lifetime cost of the plastics produced in 2019 alone exceeded
US $3.7 trillion, including expenses such as greenhouse gas
emissions, waste management, and environmental cleanup, and
without accounting for potential costs related to impacts on
human health [5]. Small plastic particles are generated by
weathering and degradation or intentionally produced [4,6].
These particles, including fibers, are categorized based on their
dimensions, with those ranging from 5 mm to 1 μm referred to
as microplastics (MPs), and those smaller than 1 μm termed
nanoplastics (NPs) [6]. Although there is growing evidence of
micro- and nanoplastics (MNPs) in air, drinking water, and food
[7], the scale of MNP exposure and behavior in the human body
remains uncertain [8]. Furthermore, the potential risk MNPs
pose to human health is largely unknown [9,10].

MNPs represent a complex class of pollutants, with a range of
physical-chemical properties, such as morphology, composition,
density, and surface chemistry. Human health risk assessment
of MNPs presents unique challenges, primarily due to the
complexity and diversity of these particles [9]. Established risk

assessment frameworks, for example, for engineered
nanomaterials and chemical pollution, are likely inadequate to
account for the complex characteristics of MNPs [11,12]. Recent
inventories document more than 4000 substances used in plastic
packaging and more than 10,000 plastic-associated compounds,
including organic polymers, additives such as plasticizers, and
nonintentionally added substances such as reaction by-products
[13,14]. Furthermore, MNPs in ecosystems may form
eco-coronas, which may subsequently absorb other
environmental pollutants and potentially facilitate human
exposure to additional pollutants [15]. Current measurement
approaches inadequately capture the full extent of
MNP-associated chemical exposures in humans, as they focus
on a limited set of known chemicals.

Various analytical techniques have provided the first insights
into human exposure to MNPs. There is growing evidence that
MNPs can be detected in human tissues, including blood and
placenta tissue [16-18]. Mass-based assessment of MNPs using
high-resolution mass spectrometry coupled with pyrolysis
(Py-GC/HRMS), chemical profile assessment, and
complementary spectro-microscopic characterization have
emerged as promising approaches [19-21]. However, most MNP
exposure assessments to date have been small scale (ie, less
than 100 subjects), proof-of-concept studies, and have primarily
focused on MPs rather than NPs [17,18,22]. Critical analytical
advancements are necessary to reduce the uncertainty and error
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of exposure estimates and to enable comprehensive risk
assessment [11,23].

During gestation and early life, the developing fetus is highly
vulnerable to environmental stressors, including chemical
exposures, due to rapid organogenesis and developmental
plasticity [24]. Disruption by environmental toxicants during
this window of heightened susceptibility can have a long-lasting
impact on the molecular and physiological phenotype and health
later in life [25]. The placenta is a unique organ at the
maternal-fetal interface that facilitates gas exchange and the
transport of nutrients, hormones, and other solutes essential for
fetal growth and development, while also supporting maternal
health [26]. It has been observed that not only endogenous but
also exogenous compounds, including engineered metallic and
carbonaceous nanoparticles, can cross the placenta barrier
[27,28]. Growing evidence supports the placental translocation
of MNPs in in vitro, in vivo, and ex vivo models [29].
Furthermore, MNPs have recently been detected in human

placenta tissue, amniotic fluid, meconium, and breastmilk
[18,22,30-32]. Given that pregnancy and early life are periods
of heightened susceptibility to environmental stressors, evidence
supporting the potential for transplacental transport of MNPs
[33,34] and early-life exposure via ingestion and inhalation [35]
provide impetus for investigating the implications of MNP
exposure during these periods.

To overcome these gaps in MNP research, the Actionable
eUropean ROadmap for early-life health Risk Assessment of
micro- and nanoplastics (AURORA) research project aims to
create a comprehensive framework for evaluating the health
risks associated with MNPs during early-life stages [36].
Emphasis is placed on advancing analytical techniques for
characterizing MNPs and evaluating their potential hazards
during pregnancy and early life (Figure 1). This article provides
an overview of the objectives, approaches, methodologies,
strengths, challenges, and anticipated impacts of the AURORA
project.

Figure 1. Overview of exposure assessment, sample types, and measurement techniques in AURORA. AAH-HRMS: alkaline-assisted hydrolysis with
high resolution mass spectroscopy; AURORA: Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics;
FaSTE-MPA: Fast, Single, Tissue Extraction for Multiplexed Plastic Analysis; LC-HRMS: liquid chromatography with high resolution mass spectroscopy;
MNP: Micro- and nanoplastic; Py-GC/HRMS: pyrolysis gas chromatography high-resolution mass spectroscopy. Image created with BioRender.com
[37].

Methods

The AURORA project will address fundamental knowledge
gaps about the effects of MNPs on early-life health and inform
future human health risk assessment [36]. This 5-year project
(2021-2026) is funded by the European Union through the
Horizon 2020 program and is one of the five projects that forms
the CUSP European research cluster to study the health impacts
of MNPs [38].

Objectives
The AURORA project has five core research objectives:

1. Exposure characterization: to develop analytical methods
for in-depth characterization of MNPs in maternal and fetal
human sample matrices, including placenta.

2. Scalable exposure assessment: to develop high-throughput
analytical strategies for quantitative assessment of maternal
and prenatal exposure to MNPs and biomonitoring in human
populations.

3. Experimental toxicology: to assess toxicity, toxicokinetics,
and toxicodynamics of MNPs in experimental models,
focusing on placental models.
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4. Epidemiology: to evaluate associations between MNP
exposure and female reproductive and early-life health
outcomes.

5. Advance risk assessment: to develop an actionable European
framework for human health risk assessment of MNPs.

To address these objectives, the AURORA project was designed
with an interdisciplinary approach, bringing together experts in
nanoparticle characterization, inorganic chemistry, analytical
chemistry, exposomics, exposure science, biology, toxicology,
epidemiology, risk assessment, and science communication.

Study Populations and Samples
An extensive set of profiled human tissue samples, household
samples, and biological markers and health outcomes will
provide novel information about MNP exposure and health
impacts. The AURORA project involves 2 richly phenotyped
birth cohorts with unique biobanks, including placenta samples,
and will establish a new cohort to assess determinants of MNP
exposure.

The ENVIRonmental influence ON early AGEing
(ENVIRONAGE) birth cohort has been recruiting pregnant
women in the East Limburg Hospital, Genk, Belgium since
2010, and currently includes more than 2300 mother-child pairs
[39]. This cohort was established to investigate the impact of
air pollution and other environmental stressors on early
biological aging. The Barcelona Life Study Cohort (BiSC) has
recruited 1080 mother-child pairs residing in the Barcelona
metropolitan area, Spain, during the years 2018-2021 with the
overall aim of investigating the impact of the early-life
exposome on maternal and child health and development [40].
Both cohorts collected fresh placenta tissue immediately after
delivery. In addition to the standard biopsies sampled at fixed
locations on the fetal and maternal side of the placenta [39], for
a subset of women recruited since 2020, a de novo sample
collection of the entire placenta was initiated with a sample
collection procedure designed to minimize MNP contamination.
In addition to placenta samples, cord blood, maternal urine, and
blood samples from these cohorts will be analyzed to
comprehensively characterize MNP exposures. To assess the
impact of MNP exposures on maternal and early-life health, we
will leverage the longitudinal assessments and novel health
outcome data from the 2 birth cohorts, including markers of
placental function, immune-inflammatory responses, oxidative
stress, accelerated biological aging (telomere length), birth
outcomes, and childhood growth and development.

Furthermore, a new cohort will be established in the Netherlands
to assess determinants of MNP exposure, specifically among
women of reproductive age (18-45 years). We will include 110
women living within 50 km of Utrecht, the Netherlands. Blood,
urine, and household dust samples will be collected at baseline
and after 3 months. In addition, a self-administered online
questionnaire, taking approximately 15 minutes to complete,
will be used to identify factors contributing to MNP exposure.
This questionnaire will gather sociodemographic information,
home environment characteristics, food consumption and
preparation habits, as well as lifestyle and behavior patterns.

Quality Assurance and Quality Control
One of the considerations taken across the project is minimizing
both primary MNP contamination during sample collection and
secondary MNP contamination during processing and analysis
with quality assurance and quality control (QA/QC) measures
[41]. Plastic is commonly used for collecting biological samples
and has many applications in laboratory settings. We use glass
sample collection materials to collect de novo blood, cord blood,
and urine samples and store placenta samples in aluminum foil.
Cohort samples collected with plastic materials prior to the
AURORA project will be compared to samples from the de
novo collection to understand background contamination, and
empty collection tubes will be analyzed to determine background
MNP levels. In laboratory spaces, plastic is avoided and
removed where possible, and work is done under a laminar flow
hood. We implement QA/QC measures including field and
procedural blanks at multiple stages of collection and analysis
to account for any remaining background contamination. Quality
control samples are prepared by spiking samples with known
MNP concentrations to monitor the accuracy and performance
of the method, ensuring the quality and reliability of the data
across batches.

In-Depth Characterization of MNPs
The development of an analytical framework for the in-depth
characterization of MNPs in maternal and fetal tissues is
fundamental to providing measures of the particle characteristics
potentially driving toxicological and health effects [9]. Key
characteristics include particle quantity (mass and particle
count), morphology (size, shape), chemical composition, surface
chemistry, and state of degradation [19]. Low-throughput
nondestructive particle-based approaches will be used for
in-depth characterization.

Microscopic techniques are established for detecting and
characterizing MNPs greater than ~1 μm in diameter [20].
However, additional advancements are required for the detection
of NPs [20,21]. Thus, we will first focus on developing and
applying innovative spectro-microscopic techniques, such as
atomic force microscopy, confocal fluorescence microscopy,
and scanning electron microscopy to characterize NPs [42,43].
To characterize MPs, we will leverage additional microscopy
methods including Raman microscopy and infrared spectroscopy
[44]. These methods will be optimized and validated using
simple matrices (eg, salt and fresh water) to ensure the highest
sensitivity before analyzing tissue samples.

Adding to the complexity of MNPs is that environmental MNPs
undergo degradation, which makes understanding characteristics
of MNPs at various stages of degradation essential for the
identification of MNPs in complex matrices [45]. A vibrational
spectroscopic library of MNPs from controlled degradation
experiments will be established to facilitate identification of
MNP type, regardless of MNP condition and state of
degradation. Due to the complex nature of maternal and fetal
tissues, sufficient sample digestion, filtration, and
preconcentration is required to remove biological interferences
prior to microspectroscopic analysis and imaging [46]. Tissue
sample processing methods will be optimized to maximize
sensitivity and minimize alteration of MNPs.
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The spectroscopic methods for in-depth characterization of
MNPs will be developed and validated with commercial
polystyrene (PS) spheres. However, the advancement of
toxicological models requires the availability of well-defined,
comparable, and representative MNPs that span a diverse range
of polymers, sizes, and shapes [47]. Synthesis of suitable MNPs
is necessary due to the limited commercial availability of MNPs,
which currently predominately limits research to PS spheres
[48]. The synthesis of MNPs via nanoprecipitation for the most
common polymer types, both with and without fluorescent
tagging for detection with fluorescence microscopy, will be
performed to support the development and testing of the
toxicological models. These fluorescent tags are designed not
to leach, ensuring they remain nontoxic.

Scalable Exposure Assessment
The AURORA project will develop and apply a high-throughput
analytical workflow to quantify MNPs in human tissues. High
throughput, robust, and quantitative methods are essential for
human biomonitoring and to conduct informative
epidemiological studies [49,50]. We will use this approach to
assess the mass concentration of MNPs and associated chemicals
in maternal blood, urine, placenta, and cord blood. These metrics
are chosen because they are useful for biomonitoring studies
(maternal urine, blood) and suitable for early-life exposure
assessment (birth cohorts: placenta and cord blood).

Our approach (termed Fast, Single, Tissue Extraction for
Multiplexed Plastic Analysis: FaSTE-MPA) combines three
HRMS platforms to enable systematic characterization of MNPs
in complex matrices: (1) Py-GC/HRMS to characterize MNP
levels and cotransported volatiles and semivolatiles, (2)
alkaline-assisted hydrolysis with liquid chromatography HRMS
(AAH-HRMS) to measure particle monomers and additives,
and (3) untargeted liquid chromatography with HRMS
(LC-HRMS) to characterize the metabolome for the presence
of MNP constituents, additives, nonintentionally added
substances, and biological response profiles [51,52]. Analysis
by Py-GC/HRMS will provide mass concentration estimates of
common plastic polymers including PS, polyvinyl chloride
(PVC), polyethylene terephthalate (PET), polyamide (PA),
polyethylene (PE), polypropylene (PP), polymethyl methacrylate
(PMMA), and polycarbonate, as well as screen for other MNPs.
Additionally, AAH-HRMS and LC-HRMS provide
complementary information about both free and bounded plastic
polymers and additives, such as phthalates. We will develop a
comprehensive library containing the Py-GC/HRMS fingerprints
of common MNP polymers and associated plastic additives. In
this manner, maternal and prenatal MNP exposure and biological
responses will be measured in 800 paired placenta and cord
blood samples from the birth cohorts. Further, an in-depth
investigation into the maternal-fetal transfer of MNPs from
maternal blood to placenta to cord blood will be conducted in
a subgroup of mother-child pairs, aiming to provide insight into
kinetics and transfer efficiencies. Spatial distribution and
accumulation of MNPs within the placenta will be assessed in
a subset of placentas.

Despite the potential applications of Py-GC/HRMS for assessing
MNPs, targeted Py-GC/HRMS is currently not routinely

available in analytical laboratories designated for human
samples. Furthermore, required sample volumes (currently >1
mL) may preclude its use in the analyses of precious biobanked
samples. To identify the top chemical signals predicting MNP
exposure, we will leverage untargeted HRMS data to build
classification models for biomarkers exhibiting the highest
sensitivity and selectivity for MNP exposure. These biomarkers
will be used to establish a quantitative, targeted method that
can be implemented in human biomonitoring studies (eg, Human
Biomonitoring for Europe) and large-scale epidemiological
studies. Results from these population-based studies are critical
inputs for future etiological research and regulatory assessment
of MNP exposure and health effects [10].

Hazard Assessment: Experimental Toxicology
Despite evidence suggesting that MNPs can cross the placental
barrier, placental toxicokinetics and toxicity of MNPs remain
largely unexplored [33,53-55]. Knowledge gaps in human
placental transfer and toxicity of MNPs hinder comprehensive
hazard characterization for early-life exposure [34]. We will
apply a series of toxicological models for toxicokinetic and
effect studies, focusing on the placental barrier and assessing
the effects of MNPs on the placenta and the developing
organism. Placenta is a morphologically and functionally
complex organ; therefore, placental models with increasing
level of complexity, that is, monolayers, cocultures, and
placental perfusion, will be used to address the complex
interplay between different placental cell types [34].

Considering the multitude of MNP characteristics, toxicity
testing will be done in a tiered approach, using MNPs generated
commercially and within AURORA (Figure 2). Many MNPs
will be tested in the simple models, and based on uptake,
transport and toxicity will be prioritized for further testing in
more complex models. In Tier 1, toxicity end points (eg, cell
viability, damage to the cell membrane, and oxidative stress)
as well as uptake and transport of MNPs will be investigated
in nonsyncytialized and syncytialized human choriocarcinoma
cells (BeWo b30), representative of cytotrophoblasts and
syncytiotrophoblasts, respectively [56]. In Tier 2, MNPs will
be investigated with additional monolayer cell cultures,
including the human adenocarcinoma cell line (H295R) and
human trophoblast stem cells, as well as more complex coculture
cellular models such as BeWo/Human umbilical vein endothelial
cells (HUVEC) and BeWo/HUVEC/H295R triculture [57-59].
Tiers 1 and 2 will provide insight into a wide array of effects
on placental integrity and function, immune response, endocrine
functions, and other pathway perturbations. We will also
perform mRNA sequencing and metabolomic analyses in
selected samples to investigate system homeostasis.

Further investigations will focus on selected MNPs in a human
placental perfusion model (Tier 3), the embryonic stem cell test
with mouse embryonic stem cells (mES-D3; Tier 4), and the
zebrafish embryo toxicity model (Tier 4). Transplacental transfer
and toxicity markers will be assessed upon exposure to selected
MNPs in the human placental perfusion model [60].MNP
concentrations in perfusion media and tissue will be analyzed
by Py-GC/HRMS and LC-HRMS analysis. Untargeted
LC-HRMS and biological pathway analyses will be performed
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on the embryonic stem cell test and zebrafish embryos exposed
to MNPs [61]. Placental and developmental toxicity markers

upon MNP exposure will be compared with the health outcome
assessments in the epidemiological studies.

Figure 2. Tiered approach to investigate transport, toxicokinetics and toxicity of MNPs (micro- and nanoplastics) in toxicological models with varying
complexity, including in vitro placental models, human placental models, and developmental toxicity tests. HUVEC: human umbilical vein endothelial
cells. Image created with BioRender.com [37].

Epidemiological Studies
In epidemiological studies, we will evaluate the impact of MNPs
and other plastic-related chemicals on multiple end points: (1)
placental function; (2) system homeostasis; and (3) early-life
growth and development (Figure 3). MNP exposure will be
evaluated in 800 placenta samples from the ENVIRONAGE
and BiSC cohorts. To examine the impact of (prenatal) MNP
exposures on health, we will exploit the cohorts’ longitudinal
health assessments to generate novel data on exposure-health
associations. The children currently span from new-born to 14
years of age.

When applicable, we will pool data from the 2 birth cohorts.
We will use single-exposure-outcome regression modeling
adjusted for covariates, as well as complementary exposure-wide
modeling for MNPs and MNP-associated chemicals, including
multivariable variable selection and machine learning
approaches [62-64]. In addition, we will screen for associations
between MNPs and metabolomic analytes to identify the overall
biological alterations associated with MNP exposure and
generate novel hypotheses on potential effects of MNPs [65,66].
Moreover, mediation analyses will be performed to evaluate
system homeostasis markers, using models that accommodate
multiple and high dimensional mediators [67,68].

Given that MNPs are a continuous exposure variable, the
minimal sample size required to detect an effect for

dichotomized outcomes depends on the prevalence of the
outcome. The primary dichotomized outcomes to be examined
are asthma and allergy, both prevalent in 5%-15% European
pediatric populations [69-71]. Due to the absence of prior
knowledge on the effect size of MNPs, we referred to a study
which reported an increased risk of asthma (odds ratio [OR]
1.6-3.9) in Canadian children exposed to high phthalate
concentrations in house dust [72]. Assuming a baseline outcome
prevalence of 5%, an OR of 2, and a type I error of 0.05, the
minimal statistical power obtained with 800 participants would
be 0.77, which is deemed satisfactory. The statistical power for
continuous outcomes is higher given the same sample size.

Identifying the contributing factors to MNP exposure levels
provides insight into how MNP exposure may influence
early-life health. Therefore, we will investigate determinants
of MNP exposure, including maternal food consumption,
sociodemographic and other lifestyle factors in the birth cohorts.
The Dutch MNP exposure cohort, consisting of 110 women of
reproductive age in the Netherlands, will allow for an in-depth
assessment of the determinants of MNP exposure by combining
levels of MNPs in blood, urine, and household dust samples,
with a questionnaire investigating MNP exposure sources. We
will assess the relative contribution of food packaging, food
preparation methods, and indoor sources such as furnishing and
frequency of cleaning to MNP and plastic-associated chemical
body burdens.
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Figure 3. Overview of MNP (micro- and nanoplastic) exposure assessment and health outcomes to be evaluated in epidemiological studies in AURORA
(Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics). Image created with BioRender.com [37].

Risk Assessment
Risk assessment of MNPs is challenging, because MNPs
constitute a very broad class of substances with diverse
physiochemical properties, making it difficult to apply standard
regulatory risk assessment approaches [12,73,74]. Evaluation
of the exposure and hazard accounting for both the polymers
and MNP-associated chemicals (ie, mixture effects) is essential
[11]. Risk assessment of MNPs is also constrained by limited
availability of reference materials, analytical challenges, and
insufficient information about key characteristics of MNPs [11].
Further, hazard characterization is currently limited by lack of
information about the accumulation, persistence, and kinetics
of inhaled and ingested MNPs [10]. To understand early-life
effects, risk assessment must consider the exposure rates for
both the mother and the fetus.

We will build a framework for performing human risk
assessment for MNPs with a focus on direct risk to the fetus
and maternal-mediated risk, including via the placenta (Figure
4). A systematic evidence mapping approach will be applied to
evaluate relevant literature from organizations such as the World
Health Organization, European Food Safety Authority,
Organization for Economic Co-operation and Development,
National Institute for Occupational Safety and Health, and the
published scientific literature, and critically evaluate the
available regulatory tools for their relevance and adequacy for
assessing the risks of MNPs. The framework we develop will
integrate the project’s updated methodologies and tools for
assessing MNP exposures and risks from toxicological and
epidemiological studies. Ultimately, we will determine the
requirements to carry out a comprehensive risk assessment of
MNPs and develop recommendations for advancing risk
assessment for MNPs, focusing on early-life health.
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Figure 4. The anticipated output of the AURORA (Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics)
project, which will contribute to the development of a human health risk assessment framework for evaluating the risks associated with MNP (micro-
and nanoplastic) exposure in early life. Image created with BioRender.com [37].

Ethical Considerations
The research activities of AURORA comply with international
conventions and ethical codes, including the Declaration of
Helsinki (2013) and the Declaration of Taipei (2016). Local
ethics committees will support participating research groups to
address all ethics requirements. Measures for personal data
protection and confidentiality comply with the European Union
General Data Protection Regulation (2016/679) and the FAIR
(findable, accessible, interoperable, reusable) Data Principles
[75].

The toxicological studies adhere to the 3R principles
emphasizing nonanimal, in vitro cell, or alternative animal
models [76]. Zebrafish fall outside the definition of animal
models, eliminating the need for a specific ethical permit [77].
Human ex vivo placental perfusions with MNPs received ethics
committee approval from the Research Ethics Committee of
Hospital District of Northern Savo (952/2022). The
ENVIRONAGE and BiSC cohorts are approved by the Ethics
Committee of Hasselt University and East-Limburg Hospital
(EudraCT B37120107805) and Comite de Etica de la
Investigation Parc de salut Mar (No. 2018/8050/I), respectively.
The Dutch MNP exposure cohort received ethics approval from
the Medical Research Ethics Committee NedMec
(NL81071.041.22). Adult participants in all cohorts provided
informed consent for themselves and where applicable, for their
children. An incidental finding policy is in place for all cohorts.
All participants can withdraw from the study at any time, for
any reason and without any consequences. Participants in the
birth cohorts receive no compensation, whereas participants in
the Dutch MNP exposure cohort receive a €25 (as of July 12,

2023 1 EUR=US $1.1135) gift card upon completion of the
study.

Results

In the first 3 years of this 5-year project (2021-2026), the
following progress has been made. As of September 2024, data
analysis has begun and results are expected to be published
starting in 2025.

In-Depth Characterization
We established a database consisting of infrared spectroscopy
data measured on various polymers treated with different
conditions; created a sample preprocessing workflow for
measuring MNPs in complex human sample matrices, notably
placenta; assessed the gaps in the current field of NP synthesis
and fluorescent detection, synthesized NPs for 7 polymers
including PVC, PS, PET, PA, PP, PMMA, and low-density PE
using 2 fluorescent dyes; and summarized microspectroscopic
techniques for measuring NPs [20].

Scalable Exposure Assessment
We advanced critical operational procedures for scalable
biomonitoring of MNPs in placenta tissue and blood, including
developing high-throughput and robust sample preparation
based upon microwave-assisted extraction. We developed a
comprehensive MNPs library containing the Py-GC/HRMS
signal fingerprints of 39 common polymers, alongside relevant
information on their associated plastic additives. Sample analysis
for the characterization of maternal and fetal MNP exposure
and biological response in the BiSC and ENVIRONAGE cohorts
and spatial analysis of whole placentas is ongoing.
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Toxicological Hazard Assessment Studies
We reviewed the models for assessing placental uptake,
transport, and toxicity of MNPs [34] and optimized the
BeWo/HUVEC coculture model, and the BeWo/HUVEC/H295R
triculture. The Tier 3 placenta perfusion model and the Tier 4
zebrafish and mESD3 models have also been optimized.
Screening and prioritization of MNPs in Tier 1 and Tier 2 are
ongoing, and Tier 4 experiments with zebrafish are in progress.

Epidemiological Studies
We recruited 110 participants for the Dutch MNP exposure
cohort and collected blood, urine, and household dust samples.
Sample collection from the birth cohorts for the epidemiological
studies is complete; biobanked samples were selected from
ENVIRONAGE, and de novo samples were collected from
BiSC. Sample collection is complete for the spatial distribution
study of MNPs in the placenta and ongoing for the study on the
maternal-fetal transfer of MNPs. Follow-up of the birth cohorts
is ongoing, and epidemiological analyses will proceed when
MNP exposure estimates are available.

Risk Assessment Framework
We completed the systematic evidence mapping and initial
roadmap addressing risk assessment for MNPs in early life,
highlighting the current challenges and limitations [78]. This
will be updated when results from AURORA-associated studies
are completed, and with emerging external research and gaps
in knowledge and future research needs will be identified.

Discussion

Principal Findings
The AURORA project brings together experts with diverse
knowledge, from producing plastics and measuring plastics and
associated chemicals, to quantifying the biological impacts of
nanoparticles and chemicals on reproductive health and
development in vitro, in vivo, and in humans, as well as experts
in risk assessment and risk communication to assess exposures
to and health effects of MNPs during the critical period of
early-life development. Advancements in detection,
quantification, and characterization of MNPs are crucial for
understanding human exposure to MNPs. AURORA will
develop complementary low-throughput nondestructive
particle-based approaches for characterization of MNP
properties and high-throughput Py-GC/HRMS mass-based
measurements for scalable exposure assessment. Toxicological
testing will provide foundational insight into the toxicity of a
diverse range of MNPs in test systems with varying complexity.
The epidemiological investigations will provide the first
extensive evaluation of maternal and prenatal MNP exposures.
While developing and applying the tools and methodological
workflows, a risk assessment framework specific to MNPs will
be established.

MNPs have recently been detected in human placenta tissue,
meconium, amniotic fluid, and breastmilk, and cumulative
evidence from aquatic species indicates reproductive effects of
MNPs [18,22,30,32,79]. In mice, maternal exposure to
microplastics has been demonstrated to induce placental

dysfunction and result in metabolic disorders in both the placenta
and fetus. [80,81]. The diverse in vitro and in vivo human
placental models in AURORA show potential for more
comprehensively assessing the potential hazards of MNPs in
utero. Currently, research investigating the potential risk MNPs
may pose to early-life health in mammals remains limited
[18,22,30,32,79]. In recent small-scale human studies, an inverse
association between MNPs in amniotic fluid and gestational
age was found, and placental MNPs were linked to intrauterine
growth restriction [82,83]. Our results will enrich the
understanding of MNP exposure in human tissues and provide
insight for the first time about health effects of MNPs during
early life. Understanding the exposure and hazard of MNPs in
early life is a crucial first step toward determining whether
public health actions are needed and informing the urgency of
regulatory responses to MNPs. As the burden of plastic in the
environment increases, more evidence about how MNPs affect
human health is essential [4,84].

Limitations
Given the complex nature of MNPs, there are challenging
methodological advancements that need to be made during the
project to accurately measure and evaluate early-life exposure
to MNPs. Preliminary MNP measurements in human tissues
suggest that exposure assessment is feasible; however,
advancements in certain steps are necessary to develop
workflows tailored to complex human matrices and ensure the
reliability of exposure estimates. Additionally, the development
of suitable test materials and workflows for toxicity testing,
including dispersion protocols, requires significant
methodological advancements. Another challenge we encounter
is adequately addressing MNP contamination, which we do
through the implementation of extensive QA/QC measures.

Dissemination
The results of the study will be published in peer-reviewed
journals and further disseminated, for example, through
webinars, and scientific conferences. Analytical protocols will
be made available to the research community whenever possible.
We will also engage with stakeholders, including health care
professionals, industry, civil society organizations, and policy
makers, using a multichannel approach including the project
website, newsletters, press releases, workshops, and social
media. We will liaise with the European Commission and its
Joint Research Centre to ensure that the findings are translated
into policy. We will publish open access, including analytical
scripts. Data and metadata will be stored on the eNanoMapper
[85] data repository.

Future Directions
AURORA supports the European Strategy for Plastics in a
Circular Economy [86] by contributing to advancements of
analytical methods for assessing thousands of chemicals,
including potential unknown contaminants in future
biodegradable and compostable plastics. The tiered approach
for testing the toxicological effects of MNPs builds a framework
for assessing the potential health impacts of measures taken
under European policy. Aligned with the European Bioeconomy
Strategy [87], AURORA addresses food and nutrition security,
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sustainable resource management, reduced reliance on
nonrenewables, climate change mitigation, and European
competitiveness. By providing novel information on health and
safety risks of MNPs, AURORA will inform the development
of safer plastics and bioalternatives for a circular economy.

Along with the gaps in health knowledge, policy and regulatory
gaps must be addressed for systemic changes to be made.
Harmonization of measurement techniques, exposure metrics,
and terminology is essential to facilitate understanding between
scientific and regulatory communities. Best practice is reporting
both mass and particle counts, as will be done in AURORA
[88]. Initiatives like an MNP-reporting guidelines checklist is
a good example of moving MNP research forward in a valid,
reproducible, and comparable way [89]. The harmonization of
these key components will allow the newly generated research
to collectively contribute to informing policy and control
measures.

As the research on MNP and health is in its infancy, we
acknowledge that not all open questions will be answered within
AURORA or the CUSP cluster [38]. Therefore, in addition to
the novel methods and tools and general framework for risk
assessment of MNPs, we will develop an actionable risk
assessment framework for MNP exposure in early life where
the remaining knowledge gaps and priorities needed for
comprehensively evaluating the impact of MNPs on early-life
health are identified.

Conclusions
As plastic pollution increases globally, it is imperative to
understand the impact of MNPs on human health, particularly
during vulnerable developmental stages such as early life. The
contributions of the AURORA project are important for
understanding how MNPs may influence health in early life.
We will advance the research field by advancing characterization
and quantification methods, providing novel toxicological and
human health outcome data, and ultimately design a risk
assessment framework to inform future MNP research.
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MNP: micro- and nanoplastic
MP: microplastic
NP: nanoplastic
OR: odds ratio
PA: polyamide
PE: polyethylene
PET: polyethylene terephthalate
PMMA: polymethyl methacrylate
PP: polypropylene
PS: polystyrene
PVC: polyvinyl chloride
Py-GC/HRMS: pyrolysis gas chromatography high-resolution mass spectroscopy
QA/QC: quality assurance and quality control
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