J 2025

Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study

LAWRIE, Katerina; Petr WALDAUF; Peter BALAZ; Radosalv BORTEL; Ricardo LACERDA et. al.

Základní údaje

Originální název

Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study

Autoři

LAWRIE, Katerina; Petr WALDAUF; Peter BALAZ; Radosalv BORTEL; Ricardo LACERDA; Emma AITKEN; Krzysztof LETACHOWICZ; Mario D’ORIA; Vittorio DI MASO; Pavel STASKO; Antonio GOMES; Joana FONTAINHAS; Matej PEKAŘ (703 Slovensko, domácí); Alena SRDELIC; Study Group VAVASC a Stephen O’NEILL

Vydání

SCIENTIFIC REPORTS, BERLIN, NATURE PORTFOLIO, 2025, 2045-2322

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30212 Surgery

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.900 v roce 2024

Organizační jednotka

Lékařská fakulta

UT WoS

001401998100028

EID Scopus

999

Klíčová slova anglicky

AVAS classification; machine learning validation; ultrasound mapping

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 2. 2025 09:30, Mgr. Tereza Miškechová

Anotace

V originále

The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It’s been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.