2025
Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study
LAWRIE, Katerina; Petr WALDAUF; Peter BALAZ; Radosalv BORTEL; Ricardo LACERDA et. al.Základní údaje
Originální název
Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study
Autoři
LAWRIE, Katerina; Petr WALDAUF; Peter BALAZ; Radosalv BORTEL; Ricardo LACERDA; Emma AITKEN; Krzysztof LETACHOWICZ; Mario D’ORIA; Vittorio DI MASO; Pavel STASKO; Antonio GOMES; Joana FONTAINHAS; Matej PEKAŘ (703 Slovensko, domácí); Alena SRDELIC; Study Group VAVASC a Stephen O’NEILL
Vydání
SCIENTIFIC REPORTS, BERLIN, NATURE PORTFOLIO, 2025, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30212 Surgery
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.900 v roce 2024
Organizační jednotka
Lékařská fakulta
UT WoS
001401998100028
EID Scopus
999
Klíčová slova anglicky
AVAS classification; machine learning validation; ultrasound mapping
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 2. 2025 09:30, Mgr. Tereza Miškechová
Anotace
V originále
The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It’s been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mapping measurements using machine learning. A prospective multicentre international study (NCT04796558) with patient recruitment from March 2021-July 2024. Demographics, risk factors, vessels parameters, types of predicted and created VA (pVA, cVA) were collected. We modelled pVA and cVA using the Random Forest algorithm. Model performance was estimated and compared using Bayesian generalized linear models. ROC AUC with 95% credible intervals was the performance metric. 1151 patients were included. ROC AUC for pVA prediction by AVAS was 0.79 (0.77;0.82) and by mapping was 0.85 (0.83;0.88). ROC AUC for cVA prediction by AVAS was 0.71 (0.69;0.74) and by mapping was 0.8 (0.78;0.83). Using AVAS with other parameters increased the ROC AUC to 0.87 for pVA (0.84;0.89) and 0.82 (0.79;0.84) for cVA. Using mapping with other parameters increased the ROC AUC to 0.88 for pVA (0.86;0.91) and 0.85 (0.83;0.88) for cVA. Multiple mapping measurements showed higher performance at VA prediction than AVAS. However, AVAS is simpler and quicker, so may be preferable for routine clinical practice.