2025
On Collaboration and Automation in the Context of Threat Detection and Response with Privacy-Preserving Features
NITZ, Lasse; Akbari GURABI MEHDI; Milan ČERMÁK; Martin ŽÁDNÍK; David KARPUK et. al.Základní údaje
Originální název
On Collaboration and Automation in the Context of Threat Detection and Response with Privacy-Preserving Features
Autoři
NITZ, Lasse; Akbari GURABI MEHDI; Milan ČERMÁK; Martin ŽÁDNÍK; David KARPUK; Arthur DRICHEL; Sebastian SCHÄFER a Benedikt HOLMES
Vydání
Digital Threats: Research and Practice, Association for Computing Machinery, 2025
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizační jednotka
Ústav výpočetní techniky
Klíčová slova anglicky
Cybersecurity; Collaborative detection and response; Incident response automation; Information sharing; Privacy
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 2. 2025 11:18, RNDr. Milan Čermák, Ph.D.
Anotace
V originále
Organizations and their security operation centers often struggle to detect and respond effectively to an extensive quantity of ever-evolving cyberattacks. While collaboration, such as threat intelligence sharing between security teams, and response automation are often discussed in the cybersecurity community, issues like data sensitivity and confidence in detection may hinder their adoption. This work investigates the potentials and challenges of collaboration and automation to enhance incident response processes. We propose a reference architecture for data sharing in threat detection and response, aiming to boost collaborative and automated efforts across organizations while also considering privacy-preserving features. To address these challenges and potentials, we discuss how such a framework could enhance current response processes within and between organizations, validated with results in local attack detection, incident response, and data sharing.
Návaznosti
833418, interní kód MU |
|