J 2024

Hydrogeochemical analysis of processes affecting HCH removal using ZVI-based treatment technology

NĚMEČEK, Jan; Josef ZEMAN; Petr BRŮČEK; Pavel HRABÁK; Miroslav ČERNÍK et. al.

Základní údaje

Originální název

Hydrogeochemical analysis of processes affecting HCH removal using ZVI-based treatment technology

Autoři

NĚMEČEK, Jan; Josef ZEMAN (203 Česká republika, domácí); Petr BRŮČEK; Pavel HRABÁK a Miroslav ČERNÍK

Vydání

Applied Geochemistry, Elsevier, 2024, 0883-2927

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10500 1.5. Earth and related environmental sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.400

Kód RIV

RIV/00216224:14310/24:00138939

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001311803900001

EID Scopus

2-s2.0-85203270438

Klíčová slova anglicky

Hexachlorocyclohexane treatment; Constructed wetland; Zero valent iron; Dump leachate

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 27. 2. 2025 14:47, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

In the 1960s, ca. 3000–5000 tons of HCH residue were disposed of in an overburden dump at the Hájek kaolin/uranium mine site (Czech Republic). The dump leachate, which has a 136 μg/l average total content of hexachlorocyclohexane (HCH) isomers, discharges into a local creek and contaminates the ecosystem. A full-scale prototype for the treatment of dump leachate comprised three sequential stages: 1) permeable reactive modules filled with macro-zerovalent iron (mZVI), 2) a biosorption module and 3) an aerobic wetland module. After commissioning, HCH removal efficiency reached 95%, but decreased to 70% over the following 230 days, primarily due to the efficiency of the mZVI modules dropping from 76% to 39%. Hydrogeochemical analysis and geochemical modelling revealed that the reduction in efficiency was mainly caused by passivation of mZVI surfaces and clogging of mZVI pore spaces through precipitation of goethite, calcite and rhodochrosite, or siderite and magnetite instead of goethite where boundary conditions for O2 differed. XRD analysis of the solid phase from the mZVI modules confirmed the geochemical modelling results. The major part of the precipitated products (46–66 wt%) comprised a ferric hydroxide amorphous phase, especially in the initial mZVI module inlet, with goethite the second most abundant precipitate (10–40 wt%). Siderite and calcite also mainly precipitated in the initial module inlet. In conclusion, mZVI appears to be a suitable reductant for HCH; however, the longevity of the ZVI-based treatment system was negatively affected by precipitates in the presence of high concentrations of iron, manganese and carbonate species.