

Attack Surface Management: State of the Art and Operational Challenges

Martin Husák, Lukáš Sadlek Institute of Computer Science, Masaryk University, Brno, Czech Republic

Funded by the European Union

Attack Surface Management (ASM)

- **IBM**: "... is a continuous discovery, analysis, prioritization, remediation and monitoring of the cybersecurity vulnerabilities and potential attack vectors that make up an organization's attack surface.'
- **Splunk**:"... is continuous monitoring and analysis of an organization's attack surface for potential vulnerabilities and attack vectors, taking remedial measures to address them."

Attack surface

- Internet-facing assets: devices, network services, endpoints, ...
- Software versions and configurations of the assets
- but also organization structure and peoples' names (for social engineering)

External x Internal Attack Surface

- External what is visible to external attacker / everybody
- Internal what is visible within the organization, e.g., to the insiders (or attackers moving laterally)

Four phases of ASM (by Splunk)

Asset Discovery

- Enumerating all the assets
- Various approaches, tools, and toolsets

• Vulnerability Analysis

- How could the assets be exploited?
- Plethora of tools and approaches

• Risk Prioritization

- Which vulnerabilities pose the greatest risk?
- Which vulnerabilities are easiest to exploit?
- Are there vulnerable assets exploited before?

Remediation

- Attack surface reduction
- Not discussed in this talk situation dependent

https://www.splunk.com/en_us/blog/learn/what-is-attack-surface-management.html

Resilmesh Lessons Learned

Resilmesh project

- Situation aware enabled cyber resilience for dispersed, heterogeneous cyber systems
- Explores the concept of **cybersecurity mesh** collaborative ekosystem of tools securing modern, distributed enterprises (Gartner)

• ASM-related components

- CASM Cyber Attack Surface Management
 - Attack surface management toolset network scanners, vulnerability scanners, vulnerability database connectors
 - Orchestration via Temporal.io allows for checking all tasks are done and repeating failed ones

• ISIM – Infrastructure and Service Information Model

- Data model (ontology) defines entities and relationships in computer networks and their cybersecurity posture, from cyber assets (networks, devices, services, software, data, users) to vulnerabilities (CVEs, impacts)
- Database Neo4j graph database, effectively a knowledge graph of local network, clean-up routines
- REST API and GraphQL API allows access to the data from other components, consistency checks

SACD – Situation Awareness Consolidated Dashboard

Dashboard visualizes the content of ISIM database, e.g., details of a particular asset or vulnerability or overview of how does a vulnerability affects the whole network

Resilmesh Lessons Learned

• **Research background** is nearly non-existent

- Primarily innovated by practitioners and evolving very fast
- Lack of ground truth, datasets, and metrics hard to set up an experiment

• Tools and toolsets

- Plethora of tools available (e.g., Project Discovery)
- Complex toolset, both commercial and open-source, available
- Limited to external ASM and generic IT

Procedures

- Well known and generally understood and adopted by practitioners
- The implementation of individual steps is an open issue
- There are much more steps to consider and go through than expected

Technical limitations

- Low visibility and lack of tools for ASM outside of generic IT, e.g., in IoT and OT
- **Scalability** is often not addressed and worth investigating in large network
- **Orchestration** is a vital issue in operations, especially in large networks

Resilmesh Enhanced ASM concept securing cyber infrastructures

Define scope

- The initial step forgotten in the existing definitions and concepts
- Should cover the constituency (as understood by CSIRTs), e.g., IP range, domain
- Exceptions may arise:
 - External assets, e.g., cloud services
 - Some parts of the network may be hard to reach and assess
- Only external or also internal? How many private networks are there?

Use existing data

- Does your organization use asset inventory or configuration database?
- Use as many existing databases, and services as possible
- Facilitates the discovery of new and unknown assets

Resilmesh Enhanced ASM concept securing cyber infrastructures

Asset discovery via network scanning

- Plethora of tools available for every task and use case Nmap, MASSCAN, web scanners...
- Advantageous to combine the tools scan fast for active hosts with MASSCAN, then scan open ports with Nmap to get fingerprints
- Beware of network congestion in low-throughput parts of the network
- Not all assets can be found by active scanning (firewall rules, scan taking too long and missing working hours, etc.)
- Highly dynamic environments (e.g., virtual machines) are an issue
- Fingerprinting IoTs discloses only the OS, not the purpose of the device

Asset discovery via network traffic monitoring (e.g., NetFlow, IPFIX)

- A highly viable alternative, if present in an organization (costly)
- Higher chance of discovering an active asset, but lower quality of fingerprinting
- Long-term behavior analysis may identify IoT device types (e.g., CCTV camera, smart TVs, various sensors)

Vulnerability discovery and confirmation

- Simplest solution get fingerprint in CPE format, look up CVEs by CPE in NVD
 - Highly error-prone, but gives you a rough idea, even in large scale
- Dedicated vulnerability scanners are slightly better
- Possible financial issues high costs for running scans of large networks
 - Still a high false positive rate
- Confirmation of discovered vulnerability to minimize false positives
 - Nuclei by Project Discovery with community-driven library of detection scripts
- How to discover vulnerabilities like Log4j?

Resilmesh Enhanced ASM concept securing cyber infrastructures

Persistent storage

- Vital for continuous ASM, persistent scanning, and recognizing new assets
- Traditional relational DBs will serve well
- ELK or similar will serve well in large scale
- Graph databases as an emerging technology with promising future research

Orchestration

- Not addressed by most of the solutions primary use case if one-time pentest
- Existing toolsets have one or few hard-coded workflows or require user inputs
- Orchestrating a toolset is rather not worth it (often no configurability)
- Define custom workflow and orchestrate with, e.g., Temporal

Attack Surface Management (ASM)

- Asset discovery, Vulnerability analysis, Risk prioritization, and Remediation (as defined by Splunk)
- Common practice of cybersecurity teams, constantly evolving
- Plethora of tools and toolsets available (e.g., Project Discovery)

• Implementation of ASM in Resilmesh project

- Open-source tools cover most of the tasks of external ASM
- Heterogeneity of data and tools makes if difficult to create one-size-fits-all solution
- Proposed an orchestration framework and a "knowledge graph" of local network

Future work and research gap

- A need to find a solution for highly dynamic environments (virtualization, microservices)
- Improving the **visibility** in IoT and OT realms via dedicated scanners
- Improving vulnerability detection and confirmation
- Scalability and orchestration in large networks
- Improving internal ASM and scans from multiple vantage points

THANK YOU for your attention

Questions?

husakm@ics.muni.cz

