Detailed Information on Publication Record
2000
Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators
SLOVÁK, Jan, Andreas CAP and Vladimír SOUČEKBasic information
Original name
Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators
Authors
SLOVÁK, Jan, Andreas CAP and Vladimír SOUČEK
Edition
Differential Geometry and its Applications, Amsterdam, Elsevier Science, 2000, 0926-2245
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.449
RIV identification code
RIV/00216224:14310/00:00002564
Organization unit
Faculty of Science
UT WoS
000087046900005
Keywords in English
invariant operators; Hermitian symmetric spaces; parabolic geometry; standard operators
Změněno: 18/12/2000 18:38, prof. RNDr. Jan Slovák, DrSc.
Abstract
V originále
This paper demonstrates the power of the calculus developed in the two previous parts of the series for all real forms of the almost Hermitian symmetric structures on smooth manifolds, including e.g. conformal Riemannian and almost quaternionic geometries. We give explicit formulae for distinguished invariant curved analogues of the standard operators in terms of the linear connections belonging to the structures in question, so in particular we prove their existence. Moreover, these formulae are universal for all geometries in question.
Links
GA201/96/0310, research and development project |
| ||
MSM 143100009, plan (intention) |
|