J 2000

Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators

SLOVÁK, Jan, Andreas CAP and Vladimír SOUČEK

Basic information

Original name

Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard operators

Authors

SLOVÁK, Jan, Andreas CAP and Vladimír SOUČEK

Edition

Differential Geometry and its Applications, Amsterdam, Elsevier Science, 2000, 0926-2245

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.449

RIV identification code

RIV/00216224:14310/00:00002564

Organization unit

Faculty of Science

UT WoS

000087046900005

Keywords in English

invariant operators; Hermitian symmetric spaces; parabolic geometry; standard operators
Změněno: 18/12/2000 18:38, prof. RNDr. Jan Slovák, DrSc.

Abstract

V originále

This paper demonstrates the power of the calculus developed in the two previous parts of the series for all real forms of the almost Hermitian symmetric structures on smooth manifolds, including e.g. conformal Riemannian and almost quaternionic geometries. We give explicit formulae for distinguished invariant curved analogues of the standard operators in terms of the linear connections belonging to the structures in question, so in particular we prove their existence. Moreover, these formulae are universal for all geometries in question.

Links

GA201/96/0310, research and development project
Name: Geometrické struktury a invariantní operátory
Investor: Czech Science Foundation, Geometric structures and invariant operators
MSM 143100009, plan (intention)
Name: Matematické struktury algebry a geometrie
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures of algebra and geometry