Detailed Information on Publication Record
2001
Racines d'unités cyclotomiques et divisibilité du nombre de classes d'un corps abélien réel
GREITHER, Cornelius, Radan KUČERA and Said HACHAMIBasic information
Original name
Racines d'unités cyclotomiques et divisibilité du nombre de classes d'un corps abélien réel
Name (in English)
Roots of cyclotomic units and divisibility of the class number of real abelian fields
Authors
GREITHER, Cornelius, Radan KUČERA (203 Czech Republic, guarantor) and Said HACHAMI
Edition
Acta Arithmetica, Warszawa, Instytut Matematyczny PAN, 2001, 0065-1036
Other information
Language
French
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Poland
Confidentiality degree
není předmětem státního či obchodního tajemství
Impact factor
Impact factor: 0.458
RIV identification code
RIV/00216224:14310/01:00003125
Organization unit
Faculty of Science
Keywords in English
cyclotomic units
Tags
Změněno: 27/6/2007 09:45, prof. RNDr. Radan Kučera, DSc.
V originále
Le nombre de classes $h_K$ d'un corps abélien reél $K$ a la réputation d'etre difficile a calculer, et pour cause. Dans ce travail, $K$ est un corps de gendres de type $(p,...,p)$ ($l$ fois $p$, $p$ est un premier impair). Notre résultat principal affirme que $h_K$ est divisible par $p^{2^l-l^2+l-2}$.
In English
The class number $h_K$ of a real abelian field $K$ is known to be difficult to compute. In the paper, $K$ is a genus field of the type $(p,...,p)$ ($l$ times $p$, $p$ is an odd prime). Our main result states that $h_K$ is divisible by $p^{2^l-l^2+l-2}$.
Links
MSM 143100009, plan (intention) |
|