J 2001

Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold

JANYŠKA, Josef

Basic information

Original name

Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold

Authors

JANYŠKA, Josef

Edition

Archivum Mathematicum, Brno, MU Brno, 2001, 0044-8753

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

RIV identification code

RIV/00216224:14310/01:00004221

Organization unit

Faculty of Science

Keywords in English

Poisson structure; pseudo-Riemannian manifold; natural operator

Tags

natural operator, Poisson structure, pseudo-Riemannian manifold
Změněno: 30/5/2001 11:16, prof. RNDr. Josef Janyška, DSc.

Abstract

V originále

Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are linear combinations of the vertical lift of $u\in T_xM$ and the horizontal lift of $u$ with respect to $K$. Similarlz all natural 2-vector fields are linear combinatins of two canonical 2-vector fields induced by $g$ and $K$. Conditions for natural vector fields and natural 2-vector fields to define a Jacobi or a Poisson structure on $TM$ are disscused.

Links

GA201/99/0296, research and development project
Name: Diferenciální geometrie vyššího řádu
Investor: Czech Science Foundation, Differential geometry of higher order
MSM 143100009, plan (intention)
Name: Matematické struktury algebry a geometrie
Investor: Ministry of Education, Youth and Sports of the CR, Mathematical structures of algebra and geometry
Displayed: 9/11/2024 10:47