BULANT, Michal. Class Number Parity of a Compositum of Five Quadratic Fields. Acta Math. et Informatica Univ. Ostraviensis, Ostrava (CZ), 2002, vol. 2002, No 10, p. 25-34. ISSN 1211-4774.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Class Number Parity of a Compositum of Five Quadratic Fields
Authors BULANT, Michal (203 Czech Republic, guarantor).
Edition Acta Math. et Informatica Univ. Ostraviensis, Ostrava (CZ), 2002, 1211-4774.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher Czech Republic
Confidentiality degree is not subject to a state or trade secret
RIV identification code RIV/00216224:14310/02:00006776
Organization unit Faculty of Science
Keywords in English class number; cyclotomic unit; crossed homomorphism
Tags class number, crossed homomorphism, cyclotomic unit
Changed by Changed by: Mgr. Michal Bulant, Ph.D., učo 2759. Changed: 13/5/2003 11:23.
Abstract
In this paper we show that the class number of the field $Q(\sqrt p,\sqrt q,\sqrt r,\sqrt s,\sqrt t)$ is even for $p,q,r,s,t$ being different primes either equal to 2 or congruent to 1 modulo 4. This result is based on our previous results about the parity of the class number in the case of the field $Q{\sqrt p,\sqrt q,\sqrt r}$.
Links
GA201/01/0471, research and development projectName: Algebraické, analytické a kombinatorické metody teorie čísel
Investor: Czech Science Foundation, Standard Projects
PrintDisplayed: 26/11/2020 20:26